Advertisement

UART异步通信方式。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
设计要求如下:首先,需对UART的相关文献进行详细研究,以深入理解其基本的工作原理和时序特性;其次,运用Verilog语言实现UART的发送模块、接收模块以及波特率发生模块的RTL级逻辑设计;进一步地,根据系统工作频率设定为25MHz,并设定波特率为9600bps;随后,利用ModelSim进行功能验证仿真,并借助综合工具完成电路的逻辑综合工作;在此基础上,需要添加奇/偶校验功能,并且该奇/偶校验机制应具备可配置性。此外,还需实现支持115200bps以下波特率的自适应功能,其自适应过程具体如下:a. 系统复位后,UART将立即开始接收输入信号并持续自动调整波特率直至成功接收到连续三个字节的0x55数据;b. 随后UART将以调整后的波特率连续发送三个字节的数据为0xaa;c. 之后两端设备将以该自适应调整后的波特率进行通信;d. 波特率自适应功能仅在电路复位后执行一次操作;若需要再次调整波特率以应对电路再次复位的情况,则需要重新启动自适应过程。值得注意的是,在整个波特率自适应过程中严禁对UART的波特率参数进行任何人为设置,而当自适应过程完成后才允许对波特率参数进行相应的配置。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • UART
    优质
    UART异步通信是一种无需同步时钟信号的数据传输方式,允许数据设备之间进行全双工或半双工通信。通过设置波特率实现收发双方的速率匹配,广泛应用于各种电子设备和模块间的数据交换中。 设计要求如下: 1. 查阅有关UART的资料,了解其基本工作原理及定时机制。 2. 使用Verilog语言编写UART发送、接收模块以及波特率发生器的RTL代码。 3. 假设系统时钟频率为25MHz,设定波特率为9600bps。 4. 利用ModelSim进行功能仿真,并通过综合工具完成电路综合工作。 5. 在上述基础上加入奇/偶校验支持,并允许配置。同时实现对115200bps及以下的自适应波特率设置: a) 当系统复位时,UART开始接收输入数据并不断调整波特率,直至连续正确接收到三个字节的数据(每个字节为0x55)。 b) 接着以该确定下来的波特率为基准发送3个字节的0xaa数据。 c) 之后通信双方将以此固定的波特率进行正常的信息交换。 d) 波特率自适应仅在系统复位时执行一次,若需重新调整波特率则需要对电路再次初始化。 e) 在自动匹配波特率的过程中不允许手动更改UART的波特设置参数,只有当完成整个过程后才可对外设速率进行修改。
  • 基于FPGA的UART串行接口
    优质
    本设计实现了一种基于FPGA技术的UART异步串行通信接口,有效支持数据高速、可靠传输,适用于嵌入式系统与微处理器间的通信。 通过串口接收并发送数据,波特率可调,适用于各种波特率设置。该代码可以移植到各种FPGA芯片上使用,并且只需稍作修改即可用于RS422/RS485通信。
  • UART 收发器
    优质
    异步UART收发器是一款高效的串行通信设备,支持全双工数据传输,适用于远距离、低成本的数据交换场景。 异步通信收发器的代码可以用Verilog语言编写,大家可以下载来看看,质量不错。
  • UART的FPGA收发器设计
    优质
    本项目旨在设计一种基于FPGA技术的通用异步收发器(UART),以实现高效、可靠的串行通信,适用于多种嵌入式系统和数字电路。 FPGA通用异步收发器设计(UART)
  • 与网络中同的差
    优质
    本文探讨了通信领域中的同步通信和异步通信两种模式,并分析了它们之间的主要区别,帮助读者理解其应用场景和技术特点。 在通信与网络领域,同步通信和异步通信是两种基本的数据传输方式,它们各自具有不同的特点和适用场景。 **同步通信(Synchronous Communication)** 是一种时钟同步的通信方式,在这种模式下接收端和发送端的时钟频率保持一致。数据以连续比特流的形式发送,确保了高效率且低误码率的数据传输。然而,这种方式需要精确的时钟同步机制,这增加了系统的复杂性和成本。 **异步通信(Asynchronous Communication)** 又称为起止式通信,不要求接收端和发送端的时钟完全同步。在这种方式中,数据以间歇性的方式发送:每次发送一个字节后可以等待任意长时间再发送下一个字节。每个数据包通常由起始位、数据位、奇偶校验位及停止位组成。这种方式允许使用精度较低但成本更低廉的时钟进行接收操作,因此适用于低速和低成本的应用场景,例如串行端口通信和个人计算机之间的数据交换。 **选择依据** 同步与异步通信的选择取决于应用场景的需求。对于需要高效、实时且高可靠性的应用环境如数据中心内部或高速网络链路,则推荐采用同步方式;而在家用设备或者嵌入式系统等对成本和简易性有较高要求的应用场景中,通常会选择使用异步通信技术。 **总结** 理解这两种数据传输模式的区别有助于在设计特定性能、成本及可靠性目标的通信系统时做出合适的选择。
  • C# 中使用 UDPClient 实现的两种
    优质
    本文介绍了在C#编程语言中通过UDPClient类实现异步通信的两种方法,帮助开发者更高效地处理网络数据传输。 在C#编程中,UDPClient是.NET框架提供的用于实现用户数据报协议(UDP)通信的类。作为一种无连接、不可靠的传输层协议,UDP适用于需要快速发送小数据包且对数据完整性要求不高的场景。 本篇将详细介绍如何使用UDPClient来实现异步通信的两种方式:一种通过委托完成,另一种则无需使用委托。首先讨论的是采用委托的方式进行操作。在C#中,委托是一种可以引用方法的数据类型,在异步处理过程中作为回调函数载体,当异步操作完成后系统会自动调用该方法。 利用UDPClient进行异步通信时,可以通过BeginReceive方法启动一个接收过程,并传递AsyncCallback委托和状态对象。一旦数据到达,BeginReceive注册的回调函数将被触发。以下是一个简单的示例: ```csharp public static void StartReceive(UDPClient client) { IPEndPoint remoteEP = new IPEndPoint(IPAddress.Any, 0); client.BeginReceive(new AsyncCallback(ReceiveCallback), remoteEP, null); } private static void ReceiveCallback(IAsyncResult result) { UDPClient client = (UDPClient)result.AsyncState; IPEndPoint remoteEP = (IPEndPoint)result.AsyncResult.AsyncState; byte[] data = client.EndReceive(result, ref remoteEP); // 处理接收到的数据... // 继续接收 StartReceive(client); } ``` 接下来是不使用委托的异步处理方式。从C# 4.0开始,任务并行库(TPL)引入了Task类,使得处理异步操作更为简便。我们可以利用Task.Factory.FromAsync方法将BeginReceive和EndReceive包装成一个Task,并通过await关键字等待该任务完成。 这种方式避免手动管理回调函数的复杂性,使代码更加清晰易读: ```csharp public async Task ReceiveAsync(UDPClient client) { IPEndPoint remoteEP = new IPEndPoint(IPAddress.Any, 0); while (true) { var receiveTask = client.ReceiveAsync(); var data = await receiveTask; // 处理接收到的数据... } } ``` 两种方式在功能上并无本质区别,均能实现UDP的异步通信。使用委托的方式更符合早期C#版本中的编程模式,而基于任务(TAP)的异步模型则为5.0及更高版本推荐使用的异步处理方法,它使得代码更加直观和易于维护。 根据具体项目需求和个人偏好选择合适的异步通信实现方式即可。
  • 串行
    优质
    异步串行通信是一种数据传输方式,通过将数据分成若干帧进行非连续、独立的传送,在每个字符开始时插入起始位以同步收发双方。 多线程异步串口通信通过底层API实现,在VS2010环境下编码完成。本人博客中有详尽的文档介绍有关串口通信的知识。
  • C# TCP Socket
    优质
    本教程详解了如何使用C#编程语言实现TCP Socket的异步通信技术,旨在帮助开发者构建高效、响应迅速的网络应用程序。 ZIP包里包含两个程序:一个服务器端(server)和一个客户端(client)。这两个程序采用了微软推荐的socket异步模式。首先启动server程序,然后在client端修改app.config文件中的serverhost值,之后运行即可。
  • C# TCP框架
    优质
    C# TCP异步通信框架是一款用于构建高性能网络应用程序的开发工具包,它采用异步模式处理TCP连接,有效提升服务器端响应速度和并发能力。 我开发了一个TCP异步通讯框架,并对其进行封装,以便更方便地收发消息。
  • 单片机串行入门:同
    优质
    本教程为初学者介绍单片机串行通信基础知识,涵盖同步和异步通信原理、特点及应用场景,帮助读者轻松掌握相关技能。 单片机串行通信的基础包括同步通信与异步通信这两种基本方式。在计算机系统中,数据可以通过一种称为串行的传输方法进行发送:在这种模式下,每个字节的数据以一位接一位的方式被连续地传送出去。相对应的是并行传输,在这种模式里,每位同时通过不同的线路发送。 根据时钟控制的不同,我们可以将这些串行通信方式分为同步和异步两种类型。在异步通信中,数据是以字符的形式进行传输的,并且每个字符都包含一个起始位、一些数据位(通常是7或8个),以及用于错误检测的奇偶校验位及停止位等。 发送方与接收方各自使用独立时钟来决定何时开始和结束一个字符帧的数据传递。因此,在异步通信中,波特率是一个关键指标:它表示每秒钟传输二进制数据的位数,并直接影响到整个系统的速度。 相比之下,同步通信则通过连续地传送一整块信息来进行操作;在这个过程中使用的是一系列固定格式的信息单元(比如图8.4展示的不同类型的帧结构),它们包括了用于识别开始和结束位置以及错误检测的数据校验字符。在同步模式下,发送端与接收端的时钟必须保持高度一致。 无论是异步还是同步通信方式,在单片机串行通信中都扮演着至关重要的角色,并且对于计算机系统的有效设计至关重要。理解这两种通信机制的区别及其各自的特性是实现高效数据传输的基础。