Advertisement

CycleGAN生成对抗网络,采用TensorFlow快速进行实践。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
Cyclegan,即生成式对抗网络,通过TensorFlow框架进行快速实践,该资源文件作为附件提供。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于TensorFlowCycleGAN战教程-附件资源
    优质
    本教程深入浅出地讲解了如何使用TensorFlow实现CycleGAN模型,包含详细代码和实验指导,适用于图像转换任务。 Cyclegan生成式对抗网络使用TensorFlow进行快速实战的资源分享。
  • CycleGAN-PyTorch_深度学习_风格迁移__
    优质
    CycleGAN-PyTorch是一款基于PyTorch框架实现的深度学习工具包,主要用于图像风格转换和领域适应任务,采用生成对抗网络(GAN)技术。 **正文** 循环生成对抗网络(CycleGAN)是深度学习领域中的一个重要模型,它主要用于图像到图像的翻译任务,如风格迁移。在这个PyTorch实现的项目中,我们将深入探讨CycleGAN的工作原理、实现细节以及在实际应用中的价值。 **1. CycleGAN介绍** CycleGAN是一种生成对抗网络(GAN),由Jun-Yan Zhu等人于2017年提出。不同于传统的GAN只在一个域内生成新样本,CycleGAN能够学习两个不同数据分布之间的映射,无需成对的训练样本。它通过引入循环一致性损失来解决无监督学习中的映射问题,使得生成的图像既保留原始特征又具有目标风格。 **2. 工作原理** CycleGAN包含两个生成器G和F以及两个判别器D_X和D_Y。G负责将X域的图像转换为Y域,而F则执行反向操作,即从Y域回转到X域。判别器的任务是区分真实图像与生成的假象。在训练过程中,生成器试图欺骗判别器,而判别器则努力正确识别真假图像的区别。CycleGAN的关键在于除了基本对抗损失外还引入了循环一致性损失,确保经过两次转换后的图像尽可能接近原图。 **3. PyTorch实现** 该项目使用PyTorch框架实现了CycleGAN模型。项目中包括模型结构、损失函数定义、训练过程和数据预处理等模块,用户可以根据自己的需求进行调整与训练。 **4. 风格迁移** 风格迁移是CycleGAN的一个典型应用场景,能够保留图像内容的同时赋予其另一张图片的风格特征。例如将一张风景照片转化为梵高画风的艺术作品。项目中可能提供预训练模型和样例数据供用户探索并理解CycleGAN在风格迁移中的效果。 **5. 应用领域** CycleGAN广泛应用于多个领域,包括但不限于: - 艺术创作:如将图片转换为油画或水彩等不同艺术形式。 - 视频转场:实现视频编辑中平滑的风格过渡。 - 计算机视觉:涉及图像修复、增强及多模态融合等领域。 - 医学影像处理:帮助理解不同模态医学图像间的关系。 通过CycleGAN-PyTorch项目,学习者可以深入了解和实践CycleGAN技术,并掌握如何利用这些方法进行创意应用。这对于那些希望在深度学习与计算机视觉领域进一步研究的人来说是一个宝贵的资源。
  • 图像去模糊
    优质
    本研究提出了一种基于生成对抗网络(GAN)的方法,专门用于提高图像的清晰度和细节,有效解决图像模糊问题。通过不断迭代优化,该模型能够学习到丰富的视觉特征,显著改善图像质量,在实际应用中展现出卓越的效果。 本项目旨在通过生成性对抗网络(GAN)为基础的深度学习架构来处理模糊图像。目标是根据给定的模糊图像生成视觉上完整且统计上一致的去模糊图像,从而提升其清晰度。该项目包含了训练数据、训练代码以及测试样例,并基于Keras框架构建。
  • Vessel-WGAN-PyTorch: 膜血管分割的研究
    优质
    简介:Vessel-WGAN-PyTorch项目利用生成对抗网络(WGAN)技术,在PyTorch框架下实现对视网膜血管图像的精确分割,推动了医学影像分析领域的进步。 船-维根-火炬 作者:谷玉超 该代码是使用Pytorch实现的。概述数据可以从服务器下载火车和测试数据。您也可以在eyedata文件夹中找到这些数据。 前处理: 该数据集包含20个训练图像,我的预处理的第一步是对它们进行随机裁剪至512 * 512大小。 第二步是随机调整火车图像的亮度、对比度以及色相。 我在代码中实现了此方法,因此可以方便地使用它。此外,基于GAN(生成对抗网络)的方法生成视网膜图像可以用作额外的数据源。 模型训练: 通过运行python train.py进行操作 依存关系 该代码依赖于以下库:Python 3.6 火炬皮尔结构体 vessel gan│├── eyedata # drive data│ ├── gycutils # 我的用于数据增强的工具包│ ├── Criterion.p
  • BEGAN: 在TensorFlow现边界均衡
    优质
    BEGAN在TensorFlow中的实现介绍了一种新颖的生成对抗网络架构,通过调整生成模型与判别模型之间的平衡来提高图像生成的质量和多样性。 边界均衡生成对抗网络(BEGAN)是一种改进的生成对抗网络模型。在传统的GAN架构基础上,BEGAN使用自动编码器作为判别器部分,并定义了相应的损失函数来衡量真实样本与生成样本之间的差异性。 具体来说,在构建好自动编码器损失的基础上,BEGAN计算了一个Wasserstein距离的近似值,用于评估来自不同来源的数据点(即真实的和由模型生成的)在像素层面的表现差距。根据这一设定,可区分性的自动编码器被训练为在真实数据上表现良好而对生成样本则相反;与此同时,生成网络的任务是创造出能够混淆判别器输出的真实感极强的新图像。 为了进一步增强灵活性并控制合成结果的质量与多样性之间的平衡关系,BEGAN引入了一个名为伽玛(Gamma)的超参数。通过调节这个值以及在训练过程中动态调整的一个权重k来实现对模型行为的有效管理,使得生成样本能够更好地匹配期望的标准和风格特征。
  • TF-3DGAN: 基于TensorFlow的3D现.zip
    优质
    本资料提供了一个基于TensorFlow框架的源代码库,用于实现和实验3D生成对抗网络(3DGAN),致力于促进3D模型的合成与创新研究。 TF-3DGAN 是一个基于生成对抗性网络的 Tensorflow 实现,用于学习对象形状的概率潜在空间。该项目提供了一个带有交互式卷图的博客文章来详细介绍其工作原理和技术细节。需要使用 TensorFlow 进行运行。
  • PyTorch-GANs:使PyTorch现的GAN(),包括DCGAN、Pix2Pix、CycleGAN和SRGAN。
    优质
    PyTorch-GANs是一个开源库,利用PyTorch框架实现多种生成对抗网络模型,如DCGAN、Pix2Pix、CycleGAN及SRGAN,适用于图像生成与转换任务。 在PyTorch和PyTorch Lightning框架下实现深度学习模型DCGAN的代码可以参考以下资源:DCGAN论文作者为Alec Radford、Luke Metz 和 Soumith Chintala,相关的PyTorch代码由不同的开发者贡献。此外,在这两个框架中也有关于Pix2Pix循环生成对抗网络(CycleGAN)和SRGAN的相关实现。
  • Matlab-GAN:MATLAB中的现——从GAN到Pixel2Pixel和CycleGAN-源码
    优质
    本项目在MATLAB中实现了生成对抗网络(GAN)、像素到像素(Pix2Pix)及周期一致性GAN(CycleGAN),提供了一个全面的深度学习框架,适用于图像合成与转换任务。 Matlab-GAN:生成对抗网络的MATLAB实现——从GAN到Pixel2Pixel、CycleGAN
  • (GANs)
    优质
    生成对抗网络(GANs)是一种深度学习模型,通过两个神经网络——生成器和判别器之间的竞争训练过程,来生成逼真的数据样本。 生成对抗网络(GAN)的基本概念很简单:通过让神经网络相互竞争来提升性能。通常情况下,一个GAN由两个神经网络组成: 1. **生成器**:从输入的噪声分布中产生数据,通常是图像。 2. **鉴别器**:需要判断给定的图像是真实的还是伪造的。实际上,这些图像是训练集中的真实图片或来自生成器的伪图像。 这两个组件具有相反的目标:生成器试图制造出足够逼真的图像以欺骗鉴别器;而鉴别器则努力从真假图像中进行区分。这意味着GAN不能像传统的神经网络那样直接训练: 首先,我们对鉴别器进行培训。提供给它的是一批图片,其中一半来自实际的训练集,另一半则是由生成器创建的伪图。所有这些图片都已经被正确标记了真伪信息,因此可以对其进行有效识别和分类。由于这是一个二元分类任务,所以鉴别器的最后一层需要有一个单位,并且使用S型激活函数进行处理。
  • (GAN)
    优质
    生成对抗网络(GAN)是一种深度学习模型,由生成器和判别器构成,通过二者博弈训练来生成逼真的数据样本,广泛应用于图像合成、风格转换等领域。 GAN(生成对抗网络)是一种深度学习模型,它由两部分组成:一个生成器和一个判别器。这两者通过相互竞争来改进各自的性能。本段落将详细介绍GAN的网络结构、损失函数以及相关的公式推导过程。 首先,在讨论具体细节之前,我们需要理解GAN的基本概念与目标。简而言之,生成器负责从随机噪声中创造出类似真实数据的新样本;而判别器则尝试区分这些新样本和真实的训练集样本之间的差异。通过不断迭代优化这两个网络参数,我们可以让生成器逐渐提高其模仿能力,同时使判别器保持在难以分辨真假的水平上。 接下来我们将具体探讨GAN的核心组件——即网络结构及损失函数设计,并给出相应的数学推导过程以帮助读者深入理解这一模型的工作机制。