
几种模拟后仿真方法及其优缺点分析
5星
- 浏览量: 0
- 大小:None
- 文件类型:PDF
简介:
本文探讨了几种常用的电路设计中的模拟后仿真技术,并对其各自的优点和不足进行了详细分析。
在电子设计自动化(EDA)领域中,模拟后仿真是一种重要的验证步骤,在集成电路(IC)设计的后端阶段进行。它的主要目的是确保电路物理实现后的表现符合预期标准。这一过程包括通过特定的仿真工具将电路网表信息模拟出来,并与设计规范对比以检测可能出现的问题。
根据相关文件内容,我们可以总结出几种常见的模拟后仿真方法及其优缺点:
GUI 方法:
使用图形用户界面(GUI)的方法依赖于EDA 工具来生成可用于仿真的网表。例如,calibre工具可以自动生成这些信息。这种方法的优点在于操作简便且易于与现有设计流程整合。然而,它的主要缺点是不适合进行故障诊断工作。虽然简化了操作步骤,但在需要复杂调试时会牺牲灵活性。
网表方法:
直接创建并替换前仿真中的网表文件的方法比较传统,并且可能涉及大量手动修改以适应不同的提取工具和仿真器要求。这种方法的优点在于其较高的灵活性,特别是在执行故障排除任务中可以通过调整参数快速查看效果。然而,它需要高质量的PDK(工艺设计套件)来减少前后仿真的差异性。
反标注方法:
生成包含寄生元件信息的文件,并由仿真器根据这些数据创建内部网表的方法是另一种选择。这种方法的优点在于减少了设计者的负担,因为不需要手动识别名称对应关系。然而,它的缺点包括对特定工具和语法的支持有限制,特别是在处理耦合电容等复杂细节时。
其他分类方法:
除了上述提到的几种方式外,还可以根据提取电阻(R)、电容(C)和其他元件类型以及层次化或非层次化的方式进行区分。在现代工艺中,“dummy metal”的添加可能影响寄生参数的准确性,并可能导致网表规模增加的问题需要考虑解决。
综上所述,在选择模拟后仿真方法时应综合考量工具支持度、PDK质量、提取工具特性及仿真器兼容性等因素,以确保IC设计的质量和可靠性。随着工艺的进步,反标注法可能会成为主流趋势;但当前挑战在于提高不同工具间数据的互操作性和准确性,并克服技术限制。
全部评论 (0)


