Advertisement

关于无人驾驶汽车局部路径规划的研究综述

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究综述聚焦于无人驾驶汽车领域的局部路径规划技术,全面分析了当前方法、挑战及未来发展方向,为该领域研究与应用提供指导。 本段落对近年来无人驾驶汽车路径规划算法进行了总结与归纳。首先介绍了目前主流的环境建模方法;接着详细阐述了各种路径规划算法,并通过分析它们各自的优缺点指出融合轨迹规划算法具有最佳适用性;最后,文章总结了当前研究中的挑战并提出了相应的建议。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究综述聚焦于无人驾驶汽车领域的局部路径规划技术,全面分析了当前方法、挑战及未来发展方向,为该领域研究与应用提供指导。 本段落对近年来无人驾驶汽车路径规划算法进行了总结与归纳。首先介绍了目前主流的环境建模方法;接着详细阐述了各种路径规划算法,并通过分析它们各自的优缺点指出融合轨迹规划算法具有最佳适用性;最后,文章总结了当前研究中的挑战并提出了相应的建议。
  • 及跟随控制算法
    优质
    本研究聚焦于无人驾驶汽车技术,深入探讨并开发了先进的路径规划与跟随控制算法,旨在提升车辆自主导航的安全性和效率。 本段落采用多点预瞄与滚动优化相结合的模型预测控制算法设计了汽车跟随转向控制系统,并在双移线工况下进行了不同速度条件下的实验测试。结果显示该控制器具有较小路径误差且适应性强,其性能优于Carsim控制器的表现。
  • 自动避障与跟踪控制
    优质
    本研究聚焦于自动驾驶技术中的局部避障路径规划与跟踪控制系统设计,旨在提升车辆在复杂环境下的自主导航能力和安全性。通过优化算法和实时感知技术的应用,实现高效、安全的动态障碍物规避策略。研究成果对于推进无人驾驶汽车的实际应用具有重要意义。 采用分层控制架构搭建局部避障路径规划与跟踪控制系统模型。上层为避障路径规划层,基于人工势场(APF)和模型预测控制(MPC)算法设计了两种避障路径规划器。在设计APF避障路径规划器时,在斥力场上引入了车辆与目标点的距离因子,并增设虚拟子目标点,建立了道路边界斥力势场;而在设计MPC避障路径规划器时,则对目标函数中的避障功能进行了优化改进。 下层为跟踪控制层,基于MPC算法设计了路径跟踪控制器。通过CarSim和Simulink联合仿真模型,在30km/h、60km/h及90km/h的不同车速条件下,测试车辆沿双移线参考路径的跟踪性能,并进行仿真实验验证。 将前面两种规划器分别与跟踪控制器结合后搭建了两个集成控制系统模型并进行了相应的仿真。采用效果更佳的双层MPC控制模型完成了直线避障实车试验。结果显示:试验车辆成功避开障碍物,最大方向盘转角绝对值为188.2°,横摆角速度的最大绝对值为9.411°/s,均在合理范围内;这表明所设计的双层MPC控制系统具有良好的路径规划和跟踪效果,并且行驶过程符合稳定性需求。 ### 自动驾驶汽车局部避障路径规划与跟踪控制研究 #### 一、研究背景及意义 随着科技的进步和社会发展的需要,自动驾驶技术已成为汽车行业的重要发展方向之一。其中,局部避障路径规划和跟踪控制作为关键技术环节,在提高车辆的安全性和可靠性方面发挥着重要作用。通过高效准确的路径规划以及精准可靠的路径跟踪控制策略,可以确保在遇到障碍物时迅速作出反应并选择安全路线规避风险,从而保障乘客的生命财产安全。 #### 二、国内外研究现状 ##### 2.1 局部路径规划的研究进展 近年来,在局部避障路径规划领域内积累了大量的研究成果。主要方法包括基于人工势场(APF)和模型预测控制(MPC)。其中,APF通过吸引势场引导车辆向目标点移动,并利用斥力势场避免障碍物;而MPC则通过对未来状态的预测来实现最优路线的选择。 ##### 2.2 路径跟踪控制的研究进展 路径跟踪技术也得到了广泛关注。目前,基于MPC的方法因其良好的实时性和鲁棒性被广泛应用,在动态调整车辆参数以精确跟随预定轨迹方面表现出色。 #### 三、研究内容概述 本项目采用分层架构设计了一个局部避障路径规划与跟踪控制系统模型: 1. **上层:避障路径规划层** - 设计了改进型APF和MPC两种路径规划器。对APF的修改包括引入距离因子以及增设虚拟目标点,同时建立了道路边界斥力势场;而在优化MPC时,则着重于提升其避开障碍物的能力。 2. **下层:跟踪控制层** - 基于MPC算法开发了路径跟随控制器以确保车辆能够精确地遵循由上一层规划出的路线。 #### 四、实验验证 为了检验所提出方法的有效性,研究团队在不同速度条件下进行了仿真实验,并测试了车辆对双移线参考轨迹的跟踪能力。结果表明,在所有测试车速下,汽车均能稳定且准确地跟随预定路径行驶。 此外还实施了一项实车试验来评估上述控制策略的实际性能表现:使用改进后的MPC模型完成直线避障任务后发现,实验用车成功绕过了障碍物,并在最大方向盘转角和横摆角度方面都保持了合理的数值范围;这证明所设计的双层控制系统具备良好的路径规划与跟踪效果以及行驶稳定性。 #### 五、结论 本研究提出了一种基于分层控制架构的局部避障路径规划及跟踪系统模型。通过对APF和MPC算法进行改进,显著提高了其在复杂环境中的适应性和安全性;同时,利用MPC方法实现了高精度的轨迹跟随效果。通过仿真实验与实地测试验证了该方案的有效性,并为推动自动驾驶技术的发展提供了有力支持。 #### 六、展望 尽管取得了阶段性成果,但自动驾驶领域仍面临诸多挑战。未来研究可从以下几方面着手: 1. **环境感知能力提升**:进一步改进传感器配置和技术以提高复杂场景下的识别精度。 2. **多车协同避障策略开发**:探索建立车辆间协作机制来实现更高效的障碍物规避路径规划。 3. **极端条件适应性增强**:深入研究恶劣天气和特殊路况对系统性能的影响,提升整体鲁棒性和可靠性。 通过持续的技术创新与优化改进,自动驾驶技术将更加成熟可靠,并为人们的出行带来更多便利与安全保障。
  • MPC在自动避障跟踪中应用
    优质
    本研究探讨了模型预测控制(MPC)技术在自动驾驶汽车中用于局部障碍物回避路径规划和实时路径追踪的应用效果与优化策略。 在自动驾驶车辆行驶过程中,障碍物会对安全构成较大威胁。因此,在遇到障碍物的情况下需要重新规划参考路径,确保新路径能够避开这些障碍,并且让车辆严格遵循新的路线来避免事故的发生。 本段落研究了如何通过模型预测控制(MPC)理论解决自动驾驶技术中的局部避障路径规划和路径跟踪问题,以保证在存在障碍的场景下,自动驾驶汽车的安全性和操控稳定性。
  • 与SLAM算法
    优质
    本研究聚焦于无人驾驶技术中的路径规划及同时定位与地图构建(SLAM)算法,探索高效、精准的自动驾驶解决方案。 这段文字描述的内容包括了能够产生实际成果的典型路径规划算法以及较简单的SLAM( simultaneous localization and mapping)算法,并且这些算法都是通过Python语言实现的。
  • 算法论文汇总
    优质
    本论文综述汇集了最新的研究成果与进展,专注于无人驾驶车辆中的路径规划算法。文章深入探讨并比较了几种主流算法,并分析其在不同场景下的应用效果及优缺点。 无人驾驶中的路径规划算法论文集合
  • 仿真:基MatlabA星和RRT算法优化及应用分析
    优质
    本研究探讨了在Matlab环境中使用A星(A*)与RRT算法进行无人驾驶车辆局部路径规划的方法,并对其进行了优化及应用分析。 基于Matlab仿真的无人驾驶车辆局部路径规划设计与分析:Astar与RRT算法的实践研究 本段落将围绕无人驾驶车辆在自动驾驶过程中的局部路径规划问题进行深入探讨,并着重于利用MATLAB软件平台对两种主流算法——A*(Astar)和快速随机树搜索(RRT)算法进行仿真设计。具体而言,本项目包含以下几部分内容: 1. 建立A*与RRT算法的理论基础及逻辑框架。 2. 利用Matlab软件环境实现上述两个规划算法的模拟试验,并对其性能进行全面评估。 3. 根据前两部分的研究成果提出对A*算法的具体改进措施,旨在提升其在局部路径规划中的表现效率和准确性。 4. 对优化后的A*算法进行进一步仿真验证,以证明其相对于原版算法的优势所在。 通过本项目详细的说明书编写及大量实验数据分析可以为无人驾驶车辆的自动驾驶技术提供重要参考依据。关键词包括:无人驾驶汽车、自主驾驶系统、局部路线设计与规划、路径搜索策略(如A星和RRT)、Matlab编程实现以及仿真结果评估等。
  • MPC和RRT算法与跟踪系统
    优质
    本研究致力于开发一种结合了模型预测控制(MPC)和随机树(RRT)算法的新型无人驾驶路径规划及跟踪方案,旨在优化车辆在复杂环境中的导航性能。 本段落主要研究无人驾驶车辆的路径规划与轨迹跟踪控制技术。首先介绍了问题背景及系统建模过程,包括车辆运动学模型和障碍物描述方法。随后设计了基于决策过程的预测控制算法,并专门讨论了信号灯对路径规划的影响。接着探讨了一种利用RRT(快速搜索随机树)算法进行无人驾驶车辆路径规划的方法,并结合MPC(模型预测控制),提出了新的路径规划与跟踪策略。 通过构建CarSim和Simulink联合仿真平台,研究者进行了多种道路场景下的仿真实验来验证新方法的有效性。实验结果表明: 1. 在不同速度、步长以及周期等条件的影响下,较低的速度、较大的步长及较长的周期有助于路径规划与控制更加接近目标轨迹。 2. 实验数据还显示,在一定范围内这些因素对跟踪效果影响不大,证明了所提算法具有良好的稳定性和鲁棒性。 3. 在十字路口左转场景中,车辆能够按照预设路线平稳准确地行驶。从起点到终点的整个路径跟踪过程非常顺畅且精确。参考轨迹与实际行驶轨迹几乎完全一致,确保了追踪精度。 实验结果显示最大横向误差为4毫米、纵向误差20毫米以及航向角偏差较小,进一步验证了所提方法的有效性。
  • 移动机器算法.pptx
    优质
    本研究综述探讨了移动机器人路径规划领域的最新进展与挑战,涵盖了多种算法和技术,并分析了它们的应用场景和优缺点。 移动机器人的路径规划是自主导航的核心技术之一,其目标是在给定的起点与终点之间寻找一条安全、高效且最优的路线。这一过程需要综合考虑机器人运动约束条件、环境信息以及能耗等多种因素。 基本概念上,路径规划是指在已知地图或模型中为机器人确定从起始点到目的地的一条无障碍物的最佳路径。当前主要存在基于图结构的方法、采样技术及机器学习方法等几大类算法。 基于图的路径优化策略将环境抽象成图形模式,并通过节点代表物体与障碍,边表示通行路线来建模。常用的技术包括A*算法和Dijkstra算法。其中,A*利用启发式函数指导搜索过程以快速找到最优解;而Dijkstra则采用贪心法计算出起点到所有点的最短路径。 基于采样的方法通过随机或确定性抽样获取环境数据,并据此构建机器人可达区域的地图(如网格图、凸包等),进而应用搜索算法找出最佳路线。代表性技术有粒子滤波和人工势场模型,前者使用一组代表状态与信息的“粒子”应对非线性和非高斯问题;后者通过模拟质点间的引力作用指导机器人的移动方向。 近年来,基于机器学习的方法在路径规划中展现出巨大潜力。这些方法利用大量数据训练出能够预测最佳路线的模型,如深度学习、神经网络和强化学习等技术的应用已经取得了显著进展。它们具备强大的非线性映射能力和自适应能力,在处理复杂动态环境及多变目标时尤为有效。 未来发展方向包括但不限于:多智能体路径规划(解决多个机器人协同作业的问题)、多目标优化(应对多种任务需求)、深度与增强式学习的结合、多元感知技术融合以及在线学习和自我调整等方向。随着科技的进步,移动机器人的路径规划将更加智能化,并在更多的实际场景中得到应用。