Advertisement

几种单片机复位方式

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文介绍了几种常见的单片机复位方式,包括上电自动复位、手动按钮复位以及监控定时器复位等,并探讨了它们的工作原理和应用场景。 本段落介绍了三种单片机复位的方式及其原理。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本文介绍了几种常见的单片机复位方式,包括上电自动复位、手动按钮复位以及监控定时器复位等,并探讨了它们的工作原理和应用场景。 本段落介绍了三种单片机复位的方式及其原理。
  • 与DSP中CPU和电路的功能及基本
    优质
    本文章探讨了在单片机与数字信号处理器(DSP)中的中央处理单元(CPU)以及单片机复位电路的作用,介绍了实现硬件复位的基本策略和技巧。 在上电或复位过程中,控制CPU进入初始状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就立即开始工作,以防止发出错误指令、执行不当操作,并提高电磁兼容性能。 无论使用哪种类型的单片机,在设计时都会涉及到单片机的复位电路。而这个复位电路的设计质量直接影响到整个系统的可靠性。许多用户在完成实验室调试后发现系统在现场运行中出现“死机”、“程序走飞”等问题,这通常是由于单片机的复位电路不可靠所导致。 基本的复位方式 当启动时,所有单片机都需要进行复位操作来使CPU及各部分组件进入确定初始状态,并从该初态开始工作。例如,在89系列单片机中,复位信号是从RST引脚输入到芯片内部。
  • 基于的频率测量法实现
    优质
    本文介绍了几种采用单片机技术进行频率测量的方法,通过比较分析其原理和应用场合,为工程师提供实用的技术参考。 本段落介绍了几种常用的频率测量方法,并且全部使用单片机来实现,这些方法简单实用。
  • 周期的差异及计算
    优质
    本文章主要探讨和解析单片机内部几种关键周期的概念、相互关系及其具体计算方法,帮助读者深入了解单片机的工作原理。 在讨论单片机的工作原理时,周期是一个基础且核心的概念。不同的周期对应着单片机中不同层次的运行机制,它们分别是时钟周期、机器周期和指令周期。理解这些周期的区别和计算方法对于单片机的编程和设计至关重要。 时钟周期是单片机中最小的时间单位,它决定了CPU的基本工作节奏。时钟周期也称为振荡周期,是由外接晶振频率决定的倒数。例如,一个12MHz的晶振产生的时钟周期为1/12μs(约83.3纳秒)。若将时钟频率提高到24MHz,则时钟周期变为1/24μs(约41.7纳秒)。简单来说,时钟周期就是每秒钟CPU能响应的脉冲数的倒数。通常,在一个时钟周期内,CPU可以完成一个最基本的操作。 机器周期是完成单片机中基本操作所需的时间单元。在单片机内部,一个机器周期由若干个时钟周期组成。以8051单片机为例,它的一个机器周期包含六个状态周期,每个状态又包括两个时钟周期,因此总共需要12个时钟周期来完成一个完整的机器周期。不同类型的单片机可能会有不同的配置,比如52系列单片机的机器周期也等于12个时钟周期。通过定义这些时间单元,我们可以更加精确地描述和理解指令执行的过程。 指令周期指的是从内存中读取并执行一条指令所需的时间长度,它由一个或多个完整的机器周期组成。由于不同类型的指令复杂度不一,所以它们的执行时间也会有所不同:简单的单字节指令可能只需要一个机器周期来完成;而像乘法、除法这样的复杂操作则需要两个甚至四个机器周期才能完成。因此,理解这些差异对于评估和优化单片机性能至关重要。 此外还存在总线周期的概念,这指的是CPU通过系统总线与外部存储器或I/O设备进行一次数据交换所需的时间长度。在某些情况下,这个时间单位可能独立于机器周期之外被定义;但在其他场景下,则可能是机器周期的一部分。具体而言,它涉及到对外部硬件资源的访问过程。 对于时钟周期的具体计算方法来说,在8051单片机中,一个时钟周期等于晶振频率的倒数。例如当使用12MHz的晶振时,其产生的每个时钟脉冲间隔为约83.3纳秒;而若采用24MHz,则该值减少至41.7纳秒左右。 机器周期则根据单片机的具体配置来确定,如前面提到的例子中,一个完整的机器周期等于十二个连续的时钟周期。因此,在使用12MHz晶振的情况下,每个机器周期持续大约为960纳秒;而当频率提升至24MHz,则缩短到480纳秒。 指令周期则取决于具体执行的命令类型,并通常以机器周期作为度量单位进行计算:简单如“CLR”或“MOV”的单字节操作可能只需要一个机器周期,即约960纳秒(在12MHz下);而复杂运算例如“DJNZ”,或是乘除法等则需要两至四个连续的机器周期来完成。 总而言之,明确时钟、机器及指令这三个基本时间单位之间的关系对于单片机程序设计优化以及性能分析具有重要意义。通过仔细规划这些因素,并选择合适的晶振频率和配置策略,工程师能够有效提升所开发应用软件运行效率与整体效能水平。
  • 51程序
    优质
    本教程详细讲解了基于51单片机的程序复位机制,包括硬件复位与软件复位的方法、原理及应用场景,帮助初学者掌握单片机系统稳定运行的关键技术。 本段落简要介绍了51单片机软件的复位过程。
  • 51IO端口的四应用
    优质
    本篇文章详细介绍了51单片机中IO端口的四种典型应用方式,包括输入输出配置、中断处理等技术细节。 传统51单片机的IO接口只能作为标准双向IO使用。若用它来驱动LED,则需要采用灌电流方式或是通过外接三极管进行扩展。 灌电流方法:将LED正极连接至VCC,负极连接到IO口上。当IO为高电平时,由于两极电压相同没有形成回路,因此无电流流过,此时LED熄灭;而当IO处于低电平状态时,则会有电流从VCC经过LED流向IO端子使LED点亮。 然而,在将LED正极端连接至IO接口且负极端接GND的情况下,若直接设置该IO为高电平虽然可以让LED发光,但由于单片机的上拉能力较弱导致亮度不足。为了改善这一问题可以考虑采用下面介绍的方法: 推挽工作模式:让两个独立的IO口分别与LED正、负极相连,并将控制正极端子的那个IO配置成具有较强驱动能力的推挽输出类型;而另一个则保持为标准双向灌电流输入状态,这样能够提供足够的高电平驱动强度以确保LED正常发光。
  • Amis使用总结
    优质
    本文是对Amis工具使用的全面回顾与总结,涵盖了多种使用技巧和方法,旨在帮助读者更高效地利用该平台的各项功能。 Amis 使用总结 本段落总结了 Amis 的一些使用技巧,帮助初学者快速入门当前版本(1.1.0)。 演示预览支持 Snowpack,可以实现 10 秒内启动。 - Snowpack 启动:`yarn && yarn snowpack` - WebPack 启动,请耐心等待... - `react-app-rewired` 更改为 `webpack-dev-server` 方便扩展 - `yarn && yarn server` 整理的内容包括: 1. HelloWorld(基于 Create React App) 2. Amis 基本使用,提供 `AmisRender` 用于所有页面进行注册使用。 3. Amis 组件通信 - 3.1 target-Name 方式 - 3.2 开拓方式(非官方方式) JSSDK 使用时会返回 scope,并且可以通过 `scope.getComponentByName(form1)` 获取组件实例。
  • Verilog中的赋值
    优质
    本文介绍了在Verilog硬件描述语言中常见的几种赋值方式,包括连续赋值、过程赋值等,并探讨了它们的应用场景和区别。 ### Verilog几种赋值语句详解 在Verilog硬件描述语言中,赋值语句是构建数字系统模型的关键组成部分,它允许数据从源传递到目标。根据不同的应用场景和执行时机,Verilog提供了多种赋值语句,主要包括连续赋值(Continuous Assignment)和过程赋值(Procedural Assignment)。本段落将深入探讨这两种赋值方式及其内部的细分类型,旨在为初学者提供一个全面的理解框架。 #### 连续赋值(Continuous Assignment) 连续赋值语句主要用于描述组合逻辑电路,它通过`assign`关键字实现。这种赋值方式的特点是在定义网络(net)类型变量时进行赋值,一旦赋值表达式中的任意一个操作数发生变化,立即触发赋值操作,将新的值计算并赋予目标变量。由于其即时响应的特性,连续赋值非常适合用于实现组合逻辑电路,其中典型的例子包括加法器、多路选择器和三态门。 **示例代码:** ```verilog wire out; assign out = a + b; 综合结果为加法器 assign out = en ? a : b; 多路选择器 assign out = en ? in : z; 三态门 ``` #### 过程赋值(Procedural Assignment) 过程赋值则更适用于描述时序逻辑电路,它发生在`initial`或`always`块中,根据控制流和事件驱动机制执行赋值操作。过程赋值进一步细分为: 1. **Blocking赋值**:使用“=”运算符,这种赋值方式是顺序执行的,即当前赋值操作必须完成才能执行下一条语句。 2. **Non-blocking赋值**:使用“<=”运算符,这种赋值方式是并行执行的,即所有非阻塞赋值在同一时间步内都会被调度,实际赋值会在当前时间步结束时发生。 在时序逻辑设计中,通常采用Non-blocking赋值来避免同步问题,确保时钟边沿触发的行为正确性。 **示例代码:** ```verilog reg X, Y, Z; Non-blocking assignment always @(posedge Clk) begin X <= A && B; Y <= X; Z <= Y; end Blocking assignment always @(posedge Clk) begin X = A && B; Y = X; Z = Y; end ``` 值得注意的是,在同一`always`块内,对于同一个信号,不能同时使用Blocking赋值和Non-blocking赋值,因为这会导致综合器无法确定最终的信号行为。 #### 过程连续赋值(Procedure Continuous Assignment) 过程连续赋值结合了`assign`和`deassign`语句,可以在`always`块中使用,提供了一种灵活的方式来处理异步事件,如复位信号。这种赋值方式的优先级高于Blocking和Non-blocking赋值,因此可以用来优先处理特定条件下的赋值需求。 **示例代码:** ```verilog Procedure continuous assignment always @(posedge Clk) if (Clk == 1b1) Q = D; always @(Rst) if (Rst == 1b1) assign Q = 1b0; else deassign Q; ``` 这等同于: ```verilog always @(posedge Clk or posedge Rst) if (Rst == 1b1) Q = 1b0; else if (Clk == 1b1) Q = D; ``` 通过上述解析,我们可以看到Verilog中的赋值语句不仅涵盖了基本的值传递,还能够精细地控制赋值的时机和条件,从而满足不同类型的数字电路设计需求。理解这些赋值语句的区别和应用场合,对于编写高效、可读性强的Verilog代码至关重要。
  • 51电路设计
    优质
    本项目专注于51单片机复位电路的设计与实现,探讨了多种复位方式及其应用场合,旨在提升系统的稳定性和可靠性。 单片机在可靠的复位之后会从0000H地址开始有序地执行应用程序。同时,复位电路也是容易受到外部噪声干扰的敏感部分之一。