Advertisement

STM32F103微控制器的数控电源电路设计。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该数控电源电路设计方案,依托于STM32F103微控制器的核心,实现了输出电压的调节范围在1-30V之间,并能够提供0.2A至8A的电流输出。该电路不仅具备输出低电流的能力,还能稳定地维持8A左右的电流水平。此外,电路还具备自动降流功能,当输出功率超过100W时,系统将能够智能地降低电流输出,从而保障电路的安全稳定运行。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于STM32F103
    优质
    本项目基于STM32F103微控制器开发了一套数字控制电源电路,实现了高效、稳定的电力转换与管理功能,适用于多种电子设备。 基于STM32F103的数控电源电路设计可以输出1-30V可调电压,并支持从0.2A到8A范围内的电流调节。该电路能够满足小电流需求,同时也具备提供高达8A左右的大电流能力。其最大功率为100W,当负载超过这个功率时,系统会自动降低输出电流以确保安全运行。
  • 基于STM32F103压表
    优质
    本项目设计了一款以STM32F103为核心处理器的数字电压表,通过高精度ADC实现电压测量,并采用LCD显示测量结果。 在现代电子工程领域,数字电压表作为一款至关重要的测试仪器,在准确测量并显示电压值方面发挥着重要作用。随着微控制器技术的进步,基于微控制器的数字电压表设计变得越来越流行,其中使用STM32F103微控制器的设计尤其突出。 STM32F103是意法半导体公司推出的一款高性能ARM Cortex-M3核心的微控制器,它拥有丰富的外设接口和高速运行能力,并且具有很高的稳定性。这使得该款芯片非常适合用于构建复杂的嵌入式应用,例如数字电压表设计。基于STM32F103的数字电压表示例通常需要遵循以下步骤: 首先进行外部电压采集,在此过程中通过使用分压器或专用模拟前端芯片将输入信号降至微控制器允许的最大模拟输入范围内。由于STM32F103具有多个模拟通道,因此可以同时测量多路电压或者切换不同通道实现多点采样。 接下来是模数转换(ADC)阶段,这是数字电压表设计的核心环节之一。内置的12位ADC能够将外部提供的连续变化信号转化为离散值形式的数据,并且在进行此操作时需要注意设置适当的采样频率和分辨率以确保精度与实时性要求得到满足;同时还需要对ADC模块执行校准步骤来消除潜在误差。 转换后的数字数据需要经过微控制器处理才能显示出来。这涉及到解析这些数据并将它们转化为易于理解的电压读数格式。STM32F103提供了强大的内核和丰富的库函数支持,有助于简化编程任务并实现高效的数据处理及显示控制功能。 在展示测量结果时,数码管是最常见的选择之一。通过编写适当的程序代码可以控制数码管以数字形式直观地呈现所测得的电压值给用户查看;同时需要设计合理的驱动电路以及相应的软件来确保快速刷新和准确度量数值更新。 仿真测试是整个开发流程中的重要组成部分。借助于Keil MDK或STM32CubeIDE等工具可以在虚拟环境中对程序进行调试,以提早发现可能存在的问题并优化代码质量从而提高实际硬件系统的可靠性和稳定性。 完成上述所有步骤后,基于STM32F103的数字电压表就可以投入使用了。除了测量直流电平外,这种设备还可以用于交流信号以及其他物理量如电流和电阻等参数的检测工作,在电子工程领域中具有广泛的应用前景。 综上所述,设计一款基于STM32F103微控制器架构下的高性能数字电压表示例涉及到了硬件电路布局、软件编程逻辑等多个层面的知识点。只有通过仔细规划以及严格的测试过程才能打造出一个性能稳定且测量精度高的产品。
  • 基于STM32F103BuckPI策略
    优质
    本项目研究了基于STM32F103微控制器的Buck电路比例积分(PI)控制策略,旨在优化电源转换效率和稳定性。 在STM32中使用定时器生成PWM信号,并通过周期中断更新调制波。代码提供了闭环和开环实验选项,在闭环实验中可以选择电压或电流控制模式。此外,采集到的ADC数据可以通过DAC输出,便于调试。
  • 基于STM32F103方案
    优质
    本设计围绕STM32F103微控制器,提出了一种高效稳定的数控电源电路方案,适用于多种电子设备,具有高精度和灵活性。 美国Vicor公司是目前全球最大的高密度电源模块生产商,并且它是世界上唯一能够批量生产采用零电压、零电流技术的电源模块的企业。该公司提供的产品包括DC-DC、AC-DC电源模块以及隔离与非隔离型电源转换器,其中核心技术为“零电流”开关,它使得变换器的工作频率达到1MHz以上,效率超过80%。 接下来介绍一款数控电源的相关参数: 1. 输出电压范围在1至30V之间可调,并且能够提供从0.2A到8A的连续电流输出。当功率需求超出100W时会自动降低电流。 2. 可直接输入数字设定值,从而快速准确地获得所需电压和电源。 3. 配备了1602显示屏来显示设置的电压、电流等信息;在有负载接入的情况下,则自动切换为输出功率与负载电阻的信息展示,并且还可以同时查看电量及内部温度状况。 4. 具有过压保护功能,当检测到设定值超过105%时将切断电源供应以避免损坏负载设备。 5. 设备具备低功耗设计,在待机模式下电流消耗仅约50uA左右。 6. 整体体积较小便于携带,并且内置了六个用于供电的18650电池,无需外部220V交流电支持即可实现便携式稳定电源功能。 该数控电源的设计采用了STM32F106作为主控制器,结合了一个最小系统板和两个成品模块(XL4016升压转换器及另一块升降压组合)。
  • 基于STM32F103AGV智能车系统
    优质
    本项目设计了一套基于STM32F103微控制器的AGV(自动导引运输车)智能控制系统电路,旨在实现高效、精确的导航与操作。该系统整合了先进的传感技术和控制算法,以确保AGV在各种环境下的稳定运行和灵活调度。 自己设计并制作了一款基于STM32F103C8T6的智能车控制电路,并配有相关代码。该项目使用了广州联网科技提供的AGV模块,可以根据个人需求进行适当调整。
  • 基于STM32F103光伏充.pdf
    优质
    本论文详细介绍了基于STM32F103微控制器的光伏充电系统的设计与实现。通过优化算法提高太阳能利用率及电池充电效率,确保系统的稳定性和可靠性。 本段落主要介绍了一种基于STM32F103微控制器芯片设计的光伏充电控制器,并详细阐述了其硬件电路设计、软件程序设计以及实验验证过程。该控制器主要用于独立光伏发电系统,旨在提高蓄电池的荷电水平并延长使用寿命。 一、最大功率点跟踪(MPPT)技术 MPPT技术广泛应用于太阳能发电系统中,用于最大化太阳能板输出功率。通过实时监测太阳能板的工作状态,并动态调整负载以使太阳能板始终处于最大功率点附近,从而提升能量转换效率和保护设备不受损害。 二、三段式充电控制策略 采用的三段式充电模式将整个充电过程分为恒流充电、恒压充电及浮充三个阶段。这种分步方法不仅能有效延长蓄电池寿命,还能避免过充或过放电现象的发生。 三、数字控制方式 该控制器使用了基于数字信号处理技术进行参数和算法计算的方案。相比传统的模拟控制系统,这种方法提供了更高的灵活性、稳定性和准确性。通过将采集到的模拟信号转换成数字形式,并由微处理器执行进一步处理后再输出回硬件设备上实现闭环反馈。 四、硬件设计 主要包括主电路单元(使用Buck降压变换器)和控制电路单元两大部分。前者负责调整光伏组件产生的电压至适合蓄电池充电的状态;后者则包含电源管理、驱动控制等各类辅助功能,确保实时监测与调控关键参数如电流、电压及温度。 五、软件设计 详细描述了控制器的软件架构及其各个模块的具体实现方法,包括初始化设置、数据采集程序开发以及MPPT算法和三段式充电策略的编程逻辑。此外还涉及用户界面的设计以方便操作人员进行监控与配置调整。 六、实验验证 最后通过一系列模拟不同光照强度、负载变化及蓄电池状态下的测试来评估该控制器的有效性和可靠性,结果显示其能够显著提高系统的能量利用效率以及延长电池寿命。 总结而言,本段落全面介绍了基于STM32F103微控制器的光伏充电控制系统的设计和实现细节,并展示了它在提升独立光伏发电系统性能方面的潜力。
  • 基于直流
    优质
    本设计介绍了一种基于微控制器的数控直流电流源系统,能够精确控制输出电流,适用于实验室及工业测试环境。 本设计为基于微控制器的数控直流电流源系统,其核心在于利用单片机进行精确控制以实现电流输出设定与显示功能。该系统由多个模块构成:包括微控制器、电压-电流转换器、键盘输入装置、液晶显示屏、稳定直流电源和语音提示设备等。 其中,微控制器为整个系统的中枢单元,负责所有操作的执行。项目团队选择了凌阳十六位单片机SPCE061A作为核心处理器。这款基于SOC技术的芯片拥有丰富的内置功能模块如ADC(模拟数字转换器)、DAC(数模转换器)、PLL(锁相环)等,并采用精简指令集,使得其运行速度更快且效率更高;同时具备DSP特性和硬件乘法加速算法执行能力,支持标准C语言和汇编语言开发环境。 显示部分则通过字符型液晶显示屏LCDSMC1602A来实时展示电流输出值及其他人机交互信息。该型号屏幕具有轻薄短小、低压微功耗的特点,并且能直接由单片机控制进行数据的输入与输出,无需额外增加外围电路设备。 电压-电流转换模块是系统的关键组成部分,其作用在于将电压信号转化为精确可控的电流信号。此设计中采用了大线径康铜丝绕制的大功率电阻Rf和TIP122晶体管以确保工作的稳定性和准确性;另一个方案则是通过三个运算放大器组成的电路结构来维持特定两端之间的恒定电压,从而保证了输出电流的一致性。 整个系统的操作流程涵盖了键盘输入、液晶显示、直流稳压电源供应及语音提示等功能模块。用户可以通过独立或矩阵式的按键配置设定所需的电流值及其他参数;同时系统由稳定可靠的直流电源供电,并通过内置的音效功能提供清晰准确的操作指导信息,增强了用户体验感与互动性。 软件开发方面,凌阳单片机支持Windows环境下的高效编程工具。主要的功能模块包括初始化、键盘输入处理、DA和AD转换操作、PID电流调节算法及语音提示等;其中PID控制技术用于实时调整输出的电流值以减少设定目标与其实际测量结果之间的差异性。 数字信号采集部分通过编写特定程序将模拟电压信号转化为数字化信息,经过ADC自动变换后存储于指定内存区域中供后续读取使用。此外,系统还包含了中断服务子程序来响应各种类型的中断请求并执行相应的处理逻辑。 综上所述,本设计方案结合了硬件电路与软件编程的优势,在保证数控直流电流源系统的高稳定性和精确度的同时也为用户提供了一个操作便捷且人性化的设计界面。该设计不仅适用于工业和科研领域的需求,并凭借其友好的用户交互体验为实际应用提供了更多的可能性。
  • 基于STM32F103子秤
    优质
    本项目设计了一款基于STM32F103微控制器的高精度电子秤,集成了称重传感器与LCD显示模块,适用于实验室和日常生活中的精确测量需求。 基于STM32F103的电子秤可以实现两种模式之间的切换。第一种模式将称量重量转换为千克(KG)单位,并支持实时重量显示、单价设置以及总金额计算等功能,其中单价可以通过一个3*4矩阵键盘进行两位小数精度的设置,并且具备去毛重的功能。 第二种模式则以克(g)作为重量单位,允许用户设定称重阈值上限和下限。如果检测到物体的重量低于阈值下限或超过阈值上限时,内置蜂鸣器将发出警报提示。同时该模式也支持去毛重操作。 无论在两种模式中的哪一种,进入后都可以执行校准清零的操作以确保称量结果具有较高的准确性。
  • 基于STM32F103压采集系统.pdf
    优质
    本论文介绍了基于STM32F103微控制器设计的一种电流电压采集系统。该系统能够高效准确地收集电气参数,并进行数据处理和分析,适用于多种电力监测场合。 本段落介绍了基于STM32F103单片机的电流电压采集系统的设计与实现方法,该系统主要用于配电网中的电流、电压、有功功率及无功功率等模拟量数据收集,是配电网自动化以及各种仪器设备的重要组成部分之一。文章详细描述了系统的硬件设计和软件开发过程,其核心在于利用STM32F103单片机结合相关电路模块进行信号采集与处理。 一、系统概述 在本项目中采用嵌入式STM32F103单片机作为主控制器,并通过电压互感器TV1005M和电流互感器TA1005M分别测量交流电压和电流值。该系统可以通过WiFi模块连接屏幕或手机APP,实时显示电压、电流、功率及电量等数据,同时支持设定阈值来监控电路中的电流并提供保护功能。 二、硬件设计 硬件部分主要包括以下几方面: 1. MCU单片机最小系统:这是整个系统的基石,在此基础上实现了稳定工作的条件。包括晶振和复位电路的设计确保了稳定的时钟信号供应以及可靠的重启机制。 2. WiFi模块集成:通过内置WiFi模块,使得该设备能够与屏幕或手机APP进行无线连接。这种方式简化了数据展示流程,并提高了系统操作性和访问便捷性。 3. 继电器控制设计:为了实现监控和保护功能而加入的继电器控制系统,在检测到电流或者电压超过预设限值的情况下会向继电器发送断开指令,从而切断电路防止损坏;在故障解决后可以通过用户界面重新开启供电回路以恢复正常运行状态。 三、软件开发 采用模块化编程技术进行软件设计,这种方法提高了代码的复用性、可维护性和扩展能力。主要功能包括信号采集处理及显示控制等环节的工作流程管理。 四、数据获取过程 通过电压互感器和电流互感器对交流电力参数实施监测,并将所获得的数据经过整流与滤波后转换成适合STM32F103单片机ADC模块的输入格式。然后,单片机会执行模数转换并将处理过的数据显示在屏幕上或发送至手机APP中;同时根据功率设定值进行电流监控和电路保护操作。 五、应用领域 此采集系统适用于配电网自动化及家用电器等领域,在监测电网运行状况以及工业控制系统等方面具有广泛应用前景。 六、技术亮点与创新点 该系统的显著特点包括: 1. 使用高性能且低能耗的STM32F103单片机作为处理核心。 2. 采用现代通信手段,通过WiFi模块实现了数据远程实时显示功能,进一步提升了用户体验度。 3. 硬件和软件设计均采用了模块化结构,便于后续维护与升级工作开展。 4. 引入了阈值保护机制,在确保系统安全的同时不影响正常操作流程。 七、总结 基于STM32F103单片机的电流电压采集方案不仅满足当前配电网自动化需求,还具备良好的扩展性和灵活性,并能在多个领域得到广泛应用。通过本项目的实施和研究为同类系统的开发提供了理论依据和技术参考。
  • 基于C8051F020据采集
    优质
    本简介探讨了以C8051F020微控制器为核心的数据采集系统的设计与实现。通过优化硬件配置和软件算法,该方案能够高效准确地收集环境数据,适用于工业监测、智能家居等多种应用场景。 本段落根据工程实际需求对A/D转换速度和精度的要求进行了分析,并采用过采样原理来提高数模转换的精度。利用C8051F020单片机内置的硬件资源,提出了一种简便有效的实现过采样技术的方法。