Advertisement

DRIVE视网膜血管分割——利用像素点分割的BP网络与CNN网络代码实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目采用基于BP神经网络和卷积神经网络(CNN)技术,通过处理像素级数据来精确分割视网膜血管图像。该方法在DRIVE数据库上进行了测试,为眼底疾病早期诊断提供技术支持。 主要包括数据预处理:读取DRIVE数据集的训练和测试数据,然后将图片灰度化、填充、进行像素点切片(9*9)、归一化等操作。网络为BP和CNN的训练代码以及测试代码。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DRIVE——BPCNN
    优质
    本项目采用基于BP神经网络和卷积神经网络(CNN)技术,通过处理像素级数据来精确分割视网膜血管图像。该方法在DRIVE数据库上进行了测试,为眼底疾病早期诊断提供技术支持。 主要包括数据预处理:读取DRIVE数据集的训练和测试数据,然后将图片灰度化、填充、进行像素点切片(9*9)、归一化等操作。网络为BP和CNN的训练代码以及测试代码。
  • 深度学习践:BP神经进行.doc
    优质
    本文档深入探讨了在医学影像分析领域中应用深度学习技术的具体方法,重点介绍如何通过反向传播(BP)神经网络实现对视网膜血管图像的有效分割。文档详细描述了实验设计、模型训练和测试过程,并提供了实际案例以展示该技术的应用效果与价值。 根据世界卫生组织的数据,全球范围内眼科疾病的患者数量正在增加。常见的眼科疾病包括高血压性视网膜病变、糖尿病性视网膜病变以及动脉硬化。医生通常会利用视网膜血管的形态学特征来诊断这些疾病,比如分支模式、角度、弯曲度、宽度和长度等信息。 因此,在眼底图像中准确提取出有关视网膜血管的信息对于眼科疾病的识别至关重要。为了从眼底图象中获取这些重要数据,医生需要先进行视网膜血管的分割工作,并且通常会采用人工方法或自动方法来完成这一过程。然而,由于人工操作依赖于工作人员的经验和专业水平,因此可能导致一定的主观偏差。 随着技术的进步,计算机辅助诊断系统在眼科疾病的筛查与诊断方面发挥了重要作用。实现一种准确、高效的视网膜血管图像自动分割算法已经成为一项重要的研究课题。目前人们已经提出了许多方法来解决这一问题,并且这些方法主要分为无监督和有监督两大类。
  • 自动病变
    优质
    本研究提出了一种创新算法,专门用于自动识别并分割病变视网膜图像中的复杂血管网络。通过优化现有技术,我们的方法能够更精确地捕捉细微血管结构,为早期诊断和治疗眼科疾病提供关键支持,尤其在糖尿病性视网膜病变等病症的评估中展现巨大潜力。 现有的视网膜血管分割方法大多只适用于正常视网膜图像的处理,并不能有效应对病变情况下的图像分割问题。为此,提出了一种新的针对病变视网膜图像进行血管网络分割的方法。 该方法首先利用向量场散度技术来确定大部分血管在病变视网膜中的中心线位置;接下来计算出这些中心线上每个像素的方向信息,并通过改进的定向局部对比度算法识别出位于中心线两侧的血管区域。最后,采用反向外推追踪策略处理获得的血管段末端部分,从而完整地分割出整个血管网络。 实验结果表明,在使用通用STARE眼底图像库中的所有病变视网膜图像进行测试时,该方法取得了0.9426的ROC曲线面积和0.9502的准确率。相比Hoover算法及Benson等人提出的方案,本段落提出的方法在性能上有了明显的提升,并且克服了后者对不同种类病变图像处理上的局限性问题,展现出良好的鲁棒性。
  • 基于UNet
    优质
    本项目提供了一种基于UNet架构的深度学习模型,用于自动分割视网膜图像中的血管结构。该代码旨在辅助医学研究与临床诊断,提高视网膜疾病的检测效率和准确性。 UNet医学影像分割源码的文件结构如下: - src:包含搭建U-Net模型的相关代码。 - train_utils:包括训练、验证以及多GPU训练所需的模块。 - my_dataset.py:自定义数据集类,用于读取DRIVE数据集(视网膜血管分割)。 - train.py:以单个GPU为例的训练脚本示例。 - train_multi_GPU.py:专为使用多个GPU进行训练而设计的脚本。 - predict.py:简易预测脚本,利用已训练好的权重文件对新图像进行预测测试。 - compute_mean_std.py:统计数据集各通道均值和标准差。
  • 改进算法:眼底图析——MATLAB高精度
    优质
    本研究提出了一种基于MATLAB的改进视网膜血管分割算法,通过优化技术提升了眼底图像中血管结构的识别精确度和效率。 此脚本的版权归 Tyler L. Coye (2015) 所有。Tyler 是天普大学的一名医学博士生。自发布以来,该方法已被下载超过 6,000 次。对于那些问我是否之前发布过这个算法的人,答案是没有因为医学院的时间限制而未能提前分享。然而,大量使用这种方法的论文证明了它在研究中的价值。 如果有人愿意投入时间与我合作编写此算法,我很乐意共同完成这项工作。该脚本是经过许多小时的工作和解决问题后开发出来的成果。如果您在我的工作中使用此算法,请引用以下信息: 科耶,泰勒(2015 年)。一种用于眼底图像的新型视网膜血管分割算法,MATLAB中央文件交换。 这个脚本在眼底图像中实现视网膜血管的分割,这是一个极具挑战性的任务。
  • 及算法,以Python
    优质
    本研究聚焦于视网膜血管图像的精确分割技术,并采用Python编程语言实现相关算法,旨在提高血管识别准确性与效率,为眼科疾病早期诊断提供技术支持。 基于CNN的视网膜血管图像分割模型采用U-net架构搭建而成,并使用Keras作为框架、TensorFlow作为后端。整个项目通过Python进行接口开发。
  • 基于U-Net(Pytorch
    优质
    本项目采用Pytorch框架实现了基于U-Net的深度学习模型,专为视网膜血管自动分割设计,旨在提高眼底疾病诊断的准确性和效率。 代码适配数据集需要根据数据集的特点进行相应的调整和优化,确保程序能够高效准确地处理数据。这通常包括对算法的选择、参数的调优以及可能的数据预处理步骤等。在开始编码之前,深入理解数据集的需求和限制是至关重要的。
  • 眼底三维重建
    优质
    本研究致力于开发先进的算法和技术,用于精确分割视网膜血管图像,并构建眼底血管的三维模型,以提高眼科疾病的诊断和治疗水平。 眼底视网膜图像中的血管分布情况为高血压、糖尿病等疾病的早期诊断提供了重要的参考依据。通过计算机处理这些眼底图像可以减轻医生的重复劳动负担。本段落提出了一种新的用于分割眼底视网膜血管图像的算法,该算法首先利用局部归一化方法来消除背景差异性的影响;然后使用期望最大化算法进行聚类操作以实现精确地分割出血管区域;最后基于眼底成像原理通过投影逆变换构建了三维模型,使得可以从多个角度观察和分析视网膜结构。所建立的这种模型有助于更全面深入地理解与研究相关疾病的情况。
  • 基于Python卷积神经
    优质
    本研究采用Python编程语言开发卷积神经网络模型,专门用于视网膜图像中血管结构的精确分割和识别,以提高眼科疾病的早期诊断效率。 该存储库包含使用卷积神经网络(U-net)对视网膜眼底图像中的血管进行分割的实现方法。这是一个二进制分类任务:预测眼底图像中每个像素是否为血管。所用的神经网络结构基于U-Net架构,并在DRIVE数据库上进行了性能测试。
  • DRIVE数据集在
    优质
    简介:本文探讨了DRIVE数据集在视网膜图像分割领域的应用,通过分析该数据集中提供的血管标记图,研究者能够开发和优化算法以提高眼底疾病的诊断准确性。 DRIVE数据集用于视网膜图像的分割任务,其中一半的数据作为训练集,另一半作为测试集。