Advertisement

2.45GHz 0.18μm CMOS高性能线性功率放大器设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究专注于在0.18微米CMOS工艺下设计一款高效能的2.45GHz线性功率放大器,旨在优化无线通信中的信号传输性能。 为了在更高的电源电压下运行并简化匹配网络的设计,电路采用了两级共源共栅架构。通过自偏置技术放宽了功放的热载流子退化限制,并减小了使用厚栅晶体管所带来的较差射频性能的影响。同时利用带隙基准生成一个稳定且独立于工艺和温度变化的直流基准。 该功率放大器采用SMIC 0.18 μm RF CMOS工艺设计,中心工作频率为2.45 GHz,并通过Cadence公司的spectreRF进行仿真。仿真结果显示,在3.3 V的工作电压下,最大输出功率达到30.68 dBm;在1 dB压缩点处的输出功率为28.21 dBm;功率附加效率PAE为30.26%。所设计版图面积为1.5 mm×1 mm。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 2.45GHz 0.18μm CMOS线
    优质
    本研究专注于在0.18微米CMOS工艺下设计一款高效能的2.45GHz线性功率放大器,旨在优化无线通信中的信号传输性能。 为了在更高的电源电压下运行并简化匹配网络的设计,电路采用了两级共源共栅架构。通过自偏置技术放宽了功放的热载流子退化限制,并减小了使用厚栅晶体管所带来的较差射频性能的影响。同时利用带隙基准生成一个稳定且独立于工艺和温度变化的直流基准。 该功率放大器采用SMIC 0.18 μm RF CMOS工艺设计,中心工作频率为2.45 GHz,并通过Cadence公司的spectreRF进行仿真。仿真结果显示,在3.3 V的工作电压下,最大输出功率达到30.68 dBm;在1 dB压缩点处的输出功率为28.21 dBm;功率附加效率PAE为30.26%。所设计版图面积为1.5 mm×1 mm。
  • 2.5GHz线度瓦级CMOS
    优质
    本研究专注于设计一款高性能的2.5GHz CMOS功率放大器,具备优异的线性度和高达瓦级别的输出功率,适用于现代无线通信系统。 设计了一款工作频率为2.5 GHz、最高输出功率可达31.8 dBm的CMOS功率放大器(PA)。该PA由两级全差分电路结构组成。为了实现超过1 W的输出功率,第二级放大电路包含两个完全相同的子放大器,并通过高效的片上功率合成器将这两个子放大器的输出电压相加。
  • 运算
    优质
    本项目致力于研发高性能、适用于高电压和大功率应用领域的运算放大器。通过优化电路结构与材料选择,旨在提升产品的稳定性和效率,以满足工业自动化及通信设备等高端市场的需求。 在设计和开发高压高功率运算放大器的过程中需要考虑的因素和应用的知识领域非常广泛。“高压高功率运算放大器设计”这个标题涵盖了几个核心概念:高压、高功率以及运算放大器。这些概念共同指向一种特殊类型的放大器,用于处理高电压和大电流输出的应用场景,包括音频放大器、压电换能系统及电子偏转系统等领域。 本段落介绍了使用厚膜技术开发的适用于飞机航空结构主动振动控制(AVC)系统的高压高功率运算放大器。该放大器能够承受±200V的工作电压,并提供最高达200mA的电流输出,这表明在设计这类放大器时必须特别关注电源和负载兼容性问题,包括供电范围及电流承载能力。 文中提到“Powerbooster”(功率增强器)的概念,在普通运算放大器外围增加特定电路以实现高压大电流输出。例如,在AVC系统中,需要该类放大器具备低谐波失真特性以及处理高电压和大电流的能力。 文章还强调了热管理的重要性。“thermal resistance”(热阻)在设计高压高功率运算放大器时是一个关键因素。由于这类放大器工作时会产生大量热量,因此必须有效散热以保持器件正常温度范围内的稳定运行。 此外,在开发过程中反馈机制也起到了重要作用。通过负反馈可以减少非线性失真、提高稳定性及频率响应特性,这对于设计高性能的高压高功率运算放大器至关重要。 文章中提到的设计方法包括: a) 使用高压元件(如场效应晶体管FETs)来构建离散型功率运算放大器。 b) 在单片集成电路运算放大器周围配置一个“Powerbooster”以提高电压和电流处理能力。本段落选择了后者,将功率增强器置于反馈路径中,确保IC保持稳定增益特性。 综上所述,设计高压高功率运算放大器是一个涉及多个学科的复杂过程,不仅包括电子学与电力电子学知识的应用,还涵盖了电路、热管理和材料科学等多个方面。特别是针对特定应用如飞机结构AVC系统时,还需结合具体需求进行优化以确保其在极端环境下的可靠性和长期稳定性。
  • 2.4GHz 0.35-微米CMOS全集成线
    优质
    本项目专注于设计一款基于2.4GHz频段和0.35微米CMOS工艺的全集成线性功率放大器,旨在实现高效、低功耗且性能优越的无线通信解决方案。 片上系统射频功率放大器是射频前端的关键组件之一。通过分析并比较各种功率放大器的特点,本段落采用SMIC 0.35-μm CMOS工艺设计了一款全集成的2.4 GHz WLAN线性功率放大器。该设计方案采用了不同结构的两级放大电路:驱动级使用共源共栅A类结构构建;输出级则由大MOSFET管组成的共源极电路构成。利用SMIC 0.35-μm RF CMOS模型,借助Candence公司的spectreRF工具进行仿真分析。 根据仿真的结果,设计的CMOS射频功率放大器具有良好的稳定性,在工作电压为3.3 V的情况下,1 dB压缩点输出功率约为25 dBm;当输入功率为0 dBm时,其输出功率可达25.22 dBm。
  • 基于运
    优质
    本项目设计并实现了一种基于运算放大器(OP Amp)的高性能功率放大器。该放大器具有高效率、宽带宽及低失真的特点,适用于多种音频和射频信号传输场景。 传统运放驱动的功率放大器由于受到运放电压限制,难以实现大功率输出。本设计采用将电压转换为电流的方式直接驱动功放管进行功率放大,因此其输出功率主要由末级功放管和电源决定,并且扬声器在开/关机时不会产生冲击声。整个电路没有添加任何补偿电容,保持了原汁原味的声音效果并且相位偏移很小。由于使用运放作为恒流放大器,便于更换不同性能的运放以获得不同的音色体验。 本段落设计了一款简单实用且采用运放开路驱动方式的功率放大器。
  • 基于CMOS两级运算
    优质
    本研究致力于开发一种基于CMOS技术的高效能两级运算放大器。该设计优化了性能参数,并在低功耗条件下实现了高增益和宽带宽。 复旦大学的一篇论文我很喜欢,对二级放大器的设计和理解非常有帮助。
  • 433MHz CMOS
    优质
    本项目专注于设计一款基于433MHz频段的CMOS功率放大器,旨在优化无线通信模块性能,提高传输效率与稳定性。通过采用先进的半导体工艺和电路技术,力求实现低功耗、高增益及宽工作带宽的目标。 基于IBM 0.18um SOI CMOS工艺设计了一款工作在433 MHz的两级AB类功率放大器。驱动级和输出级均采用共源共栅结构以提高电源电压,从而提升输出功率。通过自适应偏置电路解决了共源管与共栅管之间电压分布不均匀的问题,增强了电路可靠性。输入级采用了电压-电压反馈技术来降低增益并增强稳定性。片内集成了输入匹配和级间匹配电路。后仿真结果显示该放大器的增益为33.97 dB,1 dB压缩点为28.12 dBm, 功率附加效率(PAE)为23.86%。
  • CMOS运算增益(2009年)
    优质
    本文探讨了在2009年的背景下,针对高性能CMOS运算放大器的设计挑战,提出了一种能够实现高速和高增益特性的创新方法。文章详细分析了电路结构优化、负载驱动能力提升及噪声抑制策略,以期满足现代电子系统对信号处理速度与精度的严格要求。 设计了一种应用于采样保持电路中的高速高增益运算放大器。该运放采用全差分增益提高型共源共栅结构,并在输入信号通路上加入适当的补偿电容,以消除零极点对建立时间的影响。同时优化了主运放的次级极点,提高了相位裕度。 通过0.35μm CMOS工艺仿真验证,该运放的开环直流增益达到了106 dB,单位带宽为831 MHz(负载电容为8 pF),相位裕度达到60.5°,压摆率为586 V/μs。这些性能指标满足了在12位50 MS/s流水线ADC中采样保持电路的应用需求。
  • 耗恒跨导CMOS运算
    优质
    本文设计了一种高性能、低能耗的CMOS运算放大器,该放大器具有稳定的跨导特性,适用于高精度模拟电路和信号处理系统。 采用0.5 μm CMOS工艺设计了一个高增益、低功耗的恒跨导轨到轨CMOS运算放大器。该放大器使用最大电流选择电路作为输入级,并且采用了AB类结构作为输出级。通过Cadence仿真,其输入和输出均可达到轨到轨范围,在3 V电源电压下工作时,静态功耗仅为0.206 mW。当驱动10pF的容性负载时,该放大器具有高达100.4 dB的增益,并且单位增益带宽约为4.2 MHz,相位裕度为63°。