Advertisement

自动驾驶汽车SOTIF验证方法的研究与发展

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究聚焦于自动驾驶汽车的安全性评估,特别是SOTIF(超出设计操作范围之外的功能安全)方面,探讨并发展有效的验证与测试策略,以提升车辆在复杂环境中的可靠性和安全性。 国际标准化组织(ISO)的预定功能安全(SOTIF)是一个相对较新的标准,它解释了系统预定功能的处理机制以及合理误用验证的方法。此标准要求在实际应用中实现基于ISO SOTIF的先进驾驶辅助系统(ADAS)和自动驾驶系统的验证过程。本段落旨在通过智能速度辅助(ISA)作为示例来阐述ISO SOTIF验证过程中虚拟仿真与合成场景创建策略的应用。 文中提到,ISO SOTIF建议的流程被用作测试策略推导的基础,并且在执行时需要确保技术和功能安全要求得到满足。危险识别和风险评估按照定义的标准程序进行实施。借助于虚拟仿真工具来构建符合ISO SOTIF标准的合成场景是本段落讨论的核心内容之一。 文中提出了一种详细的场景生成方法,包括使用包含所有可能相关静态及动态行为者的树状图结构来进行场景构思;首先创建“一行”或“两行”的简化伪场景,随后逐步扩展至完整细节。这些详细构建出的场景会进一步在虚拟仿真工具中实现,并通过SIL(软件在环)、MIL(模型在环)和HIL(硬件在环)环境对测试算法进行验证评估。 此外,文中还展示了如何根据输入需求规范生成额外的ISO SOTIF情景。本段落提供了多种涉及不同环境条件下的危险模拟实例来说明这一过程的实际应用情况。通过这些示例,读者可以更直观地理解自动驾驶系统中针对极端情形下性能评估的方法和策略。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • SOTIF
    优质
    本研究聚焦于自动驾驶汽车的安全性评估,特别是SOTIF(超出设计操作范围之外的功能安全)方面,探讨并发展有效的验证与测试策略,以提升车辆在复杂环境中的可靠性和安全性。 国际标准化组织(ISO)的预定功能安全(SOTIF)是一个相对较新的标准,它解释了系统预定功能的处理机制以及合理误用验证的方法。此标准要求在实际应用中实现基于ISO SOTIF的先进驾驶辅助系统(ADAS)和自动驾驶系统的验证过程。本段落旨在通过智能速度辅助(ISA)作为示例来阐述ISO SOTIF验证过程中虚拟仿真与合成场景创建策略的应用。 文中提到,ISO SOTIF建议的流程被用作测试策略推导的基础,并且在执行时需要确保技术和功能安全要求得到满足。危险识别和风险评估按照定义的标准程序进行实施。借助于虚拟仿真工具来构建符合ISO SOTIF标准的合成场景是本段落讨论的核心内容之一。 文中提出了一种详细的场景生成方法,包括使用包含所有可能相关静态及动态行为者的树状图结构来进行场景构思;首先创建“一行”或“两行”的简化伪场景,随后逐步扩展至完整细节。这些详细构建出的场景会进一步在虚拟仿真工具中实现,并通过SIL(软件在环)、MIL(模型在环)和HIL(硬件在环)环境对测试算法进行验证评估。 此外,文中还展示了如何根据输入需求规范生成额外的ISO SOTIF情景。本段落提供了多种涉及不同环境条件下的危险模拟实例来说明这一过程的实际应用情况。通过这些示例,读者可以更直观地理解自动驾驶系统中针对极端情形下性能评估的方法和策略。
  • 虚拟测试场景化1
    优质
    本研究聚焦于自动驾驶汽车虚拟测试领域,探讨了场景化技术的研究现状与发展趋势,分析了关键技术挑战及解决方案。 随着自动驾驶技术的快速发展,传统的汽车测试方法已无法满足其复杂性和安全性需求。基于场景的虚拟测试成为解决这一问题的关键途径。它能够显著提高测试效率并降低测试成本,尤其对于高复杂度的自动驾驶系统而言,在不受物理限制的情况下可以模拟各种驾驶环境和条件。 在进行虚拟测试时,首先需要定义一系列代表真实世界的驾驶情境作为基础。这些情景包括但不限于交通流、道路特征以及天气状况等元素。场景可以通过静态描述、动态生成或基于规则的方式构建。明确地界定这些场景的内涵有助于设计出更具代表性且全面覆盖各种情况的测试案例。 在创建虚拟测试环境时,通常需要考虑车辆状态、道路信息、交通参与者的行为模式和环境条件等多个要素。相关的数据可以来自实际驾驶记录、模拟生成或者传感器模拟等多种来源,并通过一系列的数据处理步骤如清洗、融合及标准化等来确保其准确性和一致性。 为了验证自动驾驶系统在不同层面的性能表现,虚拟测试主要采用软件在环(SiL)、硬件在环(HiL)和车辆在环(ViL)这三种方法。其中,SiL主要用于算法逻辑的验证;HiL则关注于硬件设备与控制软件之间的交互效果评估;而ViL是目前最接近实际驾驶情况的一种测试方式,能够全面检验整个系统的综合性能。 为了进一步提高测试效率,研究者开发了场景加速技术,包括随机生成大量测试案例以及通过学习和优化策略来快速识别潜在的高风险情境。这些方法有助于迅速发现并解决自动驾驶系统中的关键问题。 尽管目前虚拟测试已经在推动自动驾驶技术的发展方面发挥了重要作用,但仍然存在许多挑战需要克服。例如,如何构建一个可动态调整且高度准确的情境数据库;实现人-车-环境系统的整体精确建模;开发标准化的虚拟测试工具链以及模拟不同渗透率下的混合交通状况等。 未来的研究应集中于这些核心技术领域以建立完善的自动驾驶汽车虚拟测试标准体系。随着技术的进步,我们期待看到更加智能和安全的自动驾驶车辆在未来广泛应用。
  • :Udacity开放源代码项目
    优质
    简介:Udacity推出开源自动驾驶汽车项目,旨在通过开放资源促进技术进步与教育普及,使更多人参与智能驾驶领域研究。 我们正在开发一款开源无人驾驶汽车,并期待您的参与和支持!秉持教育民主化的理念,我们的目标是为全球每个人提供学习机会。当我们决定教授如何制造自动驾驶汽车时,也意识到需要自己动手实践。为此,与汽车创始人兼总裁塞巴斯蒂安·特伦共同组建了核心团队。 我们做出的第一个重要决策之一就是开源代码,并邀请来自世界各地的数百名学生参与编写和贡献。以下是我们的几个主要项目: - 训练多种神经网络来预测车辆转向角度。 - 设计用于固定镜头和相机机身的底座,以便于使用标准GoPro硬件安装。 - 提供大量带有标记的数据集,涵盖多个小时的实际驾驶情况。 - 超过10个小时的真实道路数据(包括激光雷达、摄像头等)。 为了促进深度学习模型与ROS系统的交互,并使更多人能够贡献代码库,我们需要大家的共同努力和智慧。
  • 适用于、测试和场景一
    优质
    本场景旨在为自动驾驶汽车开发者提供一套完整的虚拟与现实结合的测试环境,确保车辆在各种复杂交通情况下的安全性和可靠性。 ISO 26262 标准是指导车辆安全关键电气电子系统开发的重要技术规范,适用于高级驾驶辅助系统(ADAS)及自动驾驶系统的研发与验证工作。它规定了基于V型开发模式的各阶段所需的工作内容和输出成果。 场景在自动驾驶汽车的研发、测试以及验证过程中扮演着至关重要的角色,用于描述其运行环境。通过场景可以推导出需求,并据此设计必要的硬件和软件组件;同时,在测试环节中也能够证明这些组件的安全性能。然而,由于开发的不同阶段对场景的表示方式存在差异,因此需要对其进行适当的抽象与定义。 本段落提出了一种基于V模型开发流程中的三个层次的场景抽象方法:概念性场景、逻辑性场景以及具体化场景。这种方法使得在项目初期就能够识别出高层次的概念场景,并随着项目的推进逐步细化为具体的执行方案。这有助于采用结构化的手段,从依据ISO 26262标准确立项目定义开始,经过危害分析与风险评估(HARA)阶段,最终形成必要的安全验证和测试案例。 三个层次的抽象具体如下: 1. **概念性场景**:描述自动驾驶汽车的整体运行环境,可以使用人类易于理解的语言或通过状态变量来表达。 2. **逻辑性场景**:基于状态变量及它们之间的关系来说明自动驾驶车辆的操作情境。 3. **具体化场景**:利用物理模型和实时数据详细描绘出具体的操作情况。 这种多层次的抽象方式有助于在不同开发阶段中应用一致性的场景描述,同时也能生成如需求文档、测试案例以及验证报告等工作产品。ISO 26262 标准还规定了如何在整个开发过程中系统地记录与推演场景以保证其可追溯性,并且详细列出了基于V型模型每个阶段的工作任务和产出物。 本段落探讨了该标准在不同开发阶段对场景描述的具体要求,提出了一种满足一致性需求的场景构建方法,并展示了如何根据各阶段的不同需要建立相应的场景。这种方法能够提升自动驾驶汽车的研发效率与安全性。
  • 测试
    优质
    《自动驾驶的测试与验证》一文深入探讨了在自动驾驶技术开发过程中的关键环节——如何通过模拟仿真、封闭场地及开放道路等多阶段测试确保车辆系统的安全性和可靠性。 自动驾驶技术自问世以来一直是前沿科技的代表,并且是众多科技公司研发的重点领域之一。确保其安全可靠的关键在于测试与验证过程中的系统化方法的应用,而不仅仅依靠简单的循环式测试、修复再测机制。 ISO 26262开发V模型为不同类型的测试提供了框架,但当应用于自动驾驶车辆时,则需要进行调整以应对新的挑战和问题。本段落针对自动驾驶车辆的测试难题识别出了五个主要领域:驾驶员退出控制环、复杂需求处理、非确定性算法应用、归纳学习算法效能以及故障操作系统的验证。 在没有人类直接干预的情况下运行是“驾驶员退出控制环”的核心,这对系统提出了高度可靠性和准确性的要求。“复杂需求”则意味着必须能够应对大量传感器数据和多种道路交通状况下的决策挑战。对于不确定性情况和潜在的系统缺陷,“非确定性算法”的应用变得至关重要;同时,在适应新环境方面,归纳学习算法需要从经验中不断改进自身能力。而“故障操作系统的测试”,则是确保在出现任何问题时能够安全移交控制权给驾驶员的关键。 为解决这些挑战,可以采用分阶段部署、监控器执行器对架构以及故障注入测试等方法。“分阶段部署”意味着逐步扩大自动驾驶车辆的使用场景;“监控器执行器对架构”将复杂功能与简单安全机制分离以优化系统管理。而“故障注入测试”通过模拟各种极端情况,确保系统的稳定性和安全性。 尽管在高级自主性算法的安全认证方面仍面临诸多挑战,但基于现有软件安全方法进行自动驾驶系统及其设计流程的合理规划是可行且必要的。从几十年前自动化公路系统的项目开始,到当前许多车辆已将如自动车道保持和智能巡航控制等高级驾驶辅助系统作为标配功能,再到多车车队在各种环境下的测试应用,自动驾驶技术正向着成熟的方向发展。 随着该领域复杂性的增加,传统的软件测试方法不再适用。为了确保在所有可能的交通场景中做出准确可靠的决策,必须更加注重测试过程中的全面性和创新性,并开发新的工具和技术来应对这些特殊需求。只有这样,才能保障未来自动驾驶汽车的成功应用并为公众提供更安全、便捷和智能的出行方式。
  • 丛书之决策控制PPT.rar
    优质
    本资源为《自动驾驶丛书之自动驾驶汽车决策与控制》配套PPT,涵盖车辆决策算法、控制系统等内容,适合技术学习和研究参考。 自动驾驶系列丛书包含关于自动驾驶汽车决策与控制的PPT内容。
  • 路协同报告
    优质
    本报告深入探讨了自动驾驶技术及车路协同系统的发展趋势、关键技术挑战及未来应用前景,旨在推动智能交通系统的革新。 自动驾驶技术的基本原理是通过车辆上安装的各种传感器(如雷达、摄像头)来感知周围环境,并根据这些数据做出控制决策。这种控制系统主要负责纵向和横向的组合操作:纵向控制涉及车速调节,而横向则专注于方向调整。 在实际应用中,自动驾驶过程可以分为三个关键阶段: 1. **信息采集**:在这个阶段,车辆上的传感器会探测周围的行人、其他车辆的位置以及道路状况(如车道线),并收集有关速度和加速度的数据。 2. **信息处理**:接下来,在汽车电子控制单元(ECU)中对所采集到的信息进行分析与计算。这一过程包括识别环境中的各种因素,并据此做出适当的驾驶决策。 3. **执行指令**:最后,基于之前步骤得出的结论,自动驾驶系统会向车辆的动力装置和转向控制系统发送命令以实现加速、减速或改变方向等操作。 通过这三个阶段的有效配合,无人驾驶汽车能够安全有效地在道路上行驶。
  • 概述.pdf
    优质
    本PDF文件《自动驾驶汽车概述》全面介绍了自动驾驶技术的发展历程、关键技术、应用场景及面临的挑战与未来趋势,为读者提供系统性的知识框架。 本段落探讨了自DARPA挑战赛以来开发的自动驾驶汽车研究,并重点介绍了配备有SAE 3级或更高级别自主系统的车辆。这类车的自主系统架构通常分为感知部分与决策部分两大类。 在感知方面,该系统包含多个子模块来执行各种任务:定位、静态障碍物绘制、移动物体检测及追踪、道路信息采集以及交通信号识别等。而在决策环节,则包括路线规划、路径选择、行为决定、运动计划和控制等功能组件的协同工作。 文中详细介绍了自动驾驶汽车自主系统的常规结构,并总结了当前有关感知与决策方法的研究成果。特别地,本段落还深入剖析了UFES大学车辆IARA的自主系统架构设计。 此外,文章也列举了一些由科技企业开发并广受媒体关注的重要自主研发型无人车实例。
  • 概述.docx
    优质
    本文档为读者提供了一个关于自动驾驶汽车的基本概念和工作原理的全面介绍,涵盖了技术进展、市场趋势以及未来前景。 自动驾驶汽车的自主系统架构通常包括感知系统和决策系统两大部分。感知系统又细分为多个子系统,分别承担车辆定位、静态障碍物绘制、移动障碍物检测与跟踪、道路描绘以及交通信号识别等任务。而决策系统的组成部分则涉及路线规划、路径选择、行为决策制定、运动计划及控制等多个方面的工作模块。