Advertisement

基于纯跟踪控制的路径跟踪算法及CarSim与Simulink联合仿真

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本研究提出了一种基于纯跟踪控制策略的路径跟踪算法,并通过CarSim和Simulink平台进行联合仿真验证。 纯跟踪控制与路径跟踪算法是自动驾驶及智能车辆领域中的关键技术之一。这些算法的主要目标在于确保车辆能够准确且稳定地沿着预定路线行驶,在实际应用中通常结合车辆动力学模型以及实时传感器数据,以实现精确的轨迹执行。 在联合仿真过程中,Carsim和Simulink是常用的工具。其中,Carsim是一款专业的车辆动力学模拟软件,可精准地模拟各种驾驶条件下的车辆行为;而Simulink则是MATLAB环境中的一个动态系统建模与仿真平台,在控制系统的设计及分析中被广泛应用。 通过将Carsim的车辆模型与Simulink的控制算法结合使用,可以提供全面的测试环境。在Simulink内设计并优化路径跟踪控制器(如PID控制器、滑模控制器或基于模型预测控制(MPC)的方法),随后利用接口使这些控制器输出作为车辆输入,以模拟真实驾驶情况。 常见的几种路径跟踪方法包括: 1. **PID控制器**:这是一种基本且常用的策略,通过比例(P)、积分(I)和微分(D)项的组合调整行驶方向,使其尽可能接近预定路线。 2. **滑模控制**:这种非线性控制方式具有良好的抗干扰性和鲁棒性,能够有效应对车辆模型中的不确定性因素。 3. **模型预测控制(MPC)**:MPC是一种先进的策略,考虑未来一段时间内的系统动态,并通过优化算法在线计算最佳的控制序列,以实现最小化跟踪误差或满足特定性能指标的目标。 在联合仿真过程中,我们可通过调整控制器参数、修改车辆模型或者改变模拟条件来评估不同算法在各种场景下的表现。图像文件(例如1.jpg、2.jpg和3.jpg)可能会展示仿真的可视化结果,包括行驶轨迹、控制信号的变化以及误差分析等;而纯跟踪控制路径跟踪算法联合.txt可能包含详细的仿真设置信息、数据及分析。 研究和发展这些技术对于提高自动驾驶车辆的安全性和性能至关重要。借助Carsim与Simulink的联合仿真环境进行深入开发和验证,为实际应用提供了可靠的基础支持。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • CarSimSimulink仿
    优质
    本研究提出了一种基于纯跟踪控制策略的路径跟踪算法,并通过CarSim和Simulink平台进行联合仿真验证。 纯跟踪控制与路径跟踪算法是自动驾驶及智能车辆领域中的关键技术之一。这些算法的主要目标在于确保车辆能够准确且稳定地沿着预定路线行驶,在实际应用中通常结合车辆动力学模型以及实时传感器数据,以实现精确的轨迹执行。 在联合仿真过程中,Carsim和Simulink是常用的工具。其中,Carsim是一款专业的车辆动力学模拟软件,可精准地模拟各种驾驶条件下的车辆行为;而Simulink则是MATLAB环境中的一个动态系统建模与仿真平台,在控制系统的设计及分析中被广泛应用。 通过将Carsim的车辆模型与Simulink的控制算法结合使用,可以提供全面的测试环境。在Simulink内设计并优化路径跟踪控制器(如PID控制器、滑模控制器或基于模型预测控制(MPC)的方法),随后利用接口使这些控制器输出作为车辆输入,以模拟真实驾驶情况。 常见的几种路径跟踪方法包括: 1. **PID控制器**:这是一种基本且常用的策略,通过比例(P)、积分(I)和微分(D)项的组合调整行驶方向,使其尽可能接近预定路线。 2. **滑模控制**:这种非线性控制方式具有良好的抗干扰性和鲁棒性,能够有效应对车辆模型中的不确定性因素。 3. **模型预测控制(MPC)**:MPC是一种先进的策略,考虑未来一段时间内的系统动态,并通过优化算法在线计算最佳的控制序列,以实现最小化跟踪误差或满足特定性能指标的目标。 在联合仿真过程中,我们可通过调整控制器参数、修改车辆模型或者改变模拟条件来评估不同算法在各种场景下的表现。图像文件(例如1.jpg、2.jpg和3.jpg)可能会展示仿真的可视化结果,包括行驶轨迹、控制信号的变化以及误差分析等;而纯跟踪控制路径跟踪算法联合.txt可能包含详细的仿真设置信息、数据及分析。 研究和发展这些技术对于提高自动驾驶车辆的安全性和性能至关重要。借助Carsim与Simulink的联合仿真环境进行深入开发和验证,为实际应用提供了可靠的基础支持。
  • MPC_simcar_MPC_MPC_MPC仿_
    优质
    本项目专注于汽车路径跟踪技术的研究与开发,采用模型预测控制(MPC)算法进行车辆轨迹优化和实时调整。通过SimCar平台模拟测试,验证了MPC在复杂环境下的高效性和稳定性。 使用Carsim与Matlab进行联合仿真,实现车辆跟踪双移线曲线的功能。
  • CARSIMSimulink仿:应用变道复杂规划MPC轨迹
    优质
    本文探讨了在CARSIM与Simulink环境下进行联合仿真的方法,并详细介绍了用于变道及复杂路径规划的模型预测控制(MPC)轨迹跟踪算法的应用。通过结合两套仿真平台的优势,该研究旨在优化车辆自动驾驶技术中的动态驾驶任务处理能力,特别聚焦于提高变道操作的安全性和效率以及在多样化道路条件下的路径规划准确性。 本段落介绍了《CARSIM与Simulink联合仿真:实现变道及复杂路径规划的MPC轨迹跟踪算法》的研究内容,重点在于使用Carsim和Simulink进行联合仿真实现车辆在弯道路段中的变道操作,并包含路径规划以及基于模型预测控制(MPC)的轨迹跟踪算法。本段落提供两种版本的选择方案:一种是直接在Simulink中实现,另一种则是通过C++语言编写代码来完成相同的算法功能。如果需要两个版本,则需额外支付30元费用。 该研究适用于多种路况条件下的变道与车道保持操作,并且能够对规划路径进行可视化展示。所使用的软件环境包括Carsim2020.0和Matlab R2017b,同时提供安装包支持。此外,本段落还详细探讨了汽车仿真联合技术在实现车辆变道及轨迹跟踪算法方面的应用价值和技术细节。 总的来说,《CARSIM与Simulink联合仿真实现变道与轨迹规划》为研究者们提供了深入理解和掌握基于模型预测控制的MPC路径跟踪算法以及其在实际道路条件下的有效性评估提供了一个实用平台。
  • CarsimMatlab仿模型研究
    优质
    本研究采用Carsim和Matlab进行联合仿真实验,旨在优化车辆控制系统的模型跟踪性能,提升驾驶安全性和舒适性。 压缩包包含Carsim使用的cpar文件以及Matlab的Simulink模型和S-function脚本段落件。纯跟踪算法作为车辆控制入门级控制算法,非常有必要了解学习。目前主流轨迹追踪方法主要分为两类:基于几何的方法和基于模型预测的方法;而纯跟踪属于基于几何追踪的一种方法。 尽管在理论研究方面,纯跟踪算法可能难以取得重大突破,但在实际应用中仍然具有广泛的应用价值。其核心思想是将阿克曼转向的车辆简化为自行车两轮模型,并建立前轮转角与后轴曲率之间的关系;然后以车后轴作为切点、纵向车身方向作为切线方向,控制车辆使其后轴中心依次通过轨迹上的各个目标点。
  • 智能车辆Stanley等线性相关方MATLAB实现功能
    优质
    本项目聚焦于智能车辆路径跟踪技术,采用纯跟踪控制与Stanley算法,并利用MATLAB进行仿真验证,以实现高效准确的路径追踪。 智能车辆路径跟踪控制是自动驾驶技术中的关键环节之一,它决定了汽车如何准确地沿着预设路线行驶。我们将深入探讨两种主要的控制算法:纯跟踪控制与Stanley控制算法,以及其他可能涉及的相关线性算法。 纯跟踪控制是一种基础的方法,通过比较车辆的实际位置和期望轨迹之间的偏差来调整转向角。这种策略的核心在于设计合适的控制器(如PID控制器)以减小误差并确保稳定行驶。在MATLAB中实现时,可以通过建立车辆模型、定义目标路径以及设置控制器参数来进行仿真。 Stanley控制算法是一种更先进的方法,由Christopher Thrun等人于2005年提出。该算法利用前向传感器信息(如激光雷达或摄像头)来确定横向和纵向偏差,并将这些偏差转换为方向盘命令以实现无滑移跟踪。在MATLAB中应用Stanley控制通常包括三个步骤:获取传感器数据、计算偏差以及将其转化为方向盘指令。 除了这两种方法,还有其他线性相关算法可以用于路径追踪,例如LQR(线性二次调节器)和模型预测控制(MPC)。LQR通过最小化性能指标来设计控制器。MPC则是一种前瞻性的策略,它考虑未来多个时间步的行为以优化控制决策。 智能车辆路径跟踪技术是自动驾驶领域的重要组成部分,涉及控制理论、传感器融合及车辆动力学等多个方面。借助MATLAB这样的工具,我们可以对这些复杂的算法进行建模、仿真和优化,并为实际应用提供坚实的基础。
  • MATLAB仿PID、MPC-源码
    优质
    本项目提供了一个基于MATLAB的仿真环境,用于研究和比较不同控制策略(如PID及模型预测控制(MPC))在路径跟踪任务中的性能。包含详细实现代码和测试案例。 路径跟踪及PID和MPC控制算法的MATLAB仿真源码。
  • 智能车辆MATLAB实现:Stanley等方应用
    优质
    本研究探讨了在MATLAB环境中运用多种技术进行智能车辆路径跟踪控制的方法,重点比较了纯跟踪控制器和Stanley算法的效果。 本段落探讨了智能车辆路径跟踪控制的MATLAB实现方法,主要涉及纯跟踪控制、Stanley算法以及其他相关线性算法的应用。通过这些技术,可以编写出能够根据所需路径进行精确追踪的MATLAB程序。文章的核心内容包括智能车辆、路径跟踪控制、纯跟踪控制和Stanley控制算法等关键词,并详细研究了如何利用MATLAB实现智能车辆路径跟踪中的纯跟踪与Stanley控制算法的研究。
  • 预览 车道保持 轨迹 Carsimsimulink仿研究.rar
    优质
    本资源探讨了Carsim与Simulink在车辆预览控制、车道保持及轨迹跟踪中的应用,通过联合仿真技术优化汽车动态性能。适合自动驾驶领域研究人员参考学习。 本人搭建了一些Carsim与Simulink的联合仿真模型,并介绍了车道保持(LKA)、自适应巡航(ACC)、轨迹跟随、横向控制、预瞄跟随、单点预瞄、多点预瞄、滑模变结构控制及模糊控制等算法的实现。这些资料旨在为有相关学习需求或兴趣的学生提供交流和学习的机会,不涉及积分或其他形式的交换,请大家理解并尊重他人劳动成果,谢谢!