Advertisement

利用Vision Transformer(ViT)进行猫狗图像二分类实践

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本项目运用Vision Transformer(ViT)模型对猫和狗的图片数据集进行二分类训练与测试,展示ViT在图像识别任务中的强大性能。 在本项目实战中,我们将深入探讨如何利用Vision Transformer(ViT)这一先进的深度学习模型进行图像分类任务,特别是猫狗二分类。Transformer模型最初由Vaswani等人在2017年提出,主要用于自然语言处理领域,但其独特的设计理念——自注意力机制,已经逐渐被引入到计算机视觉(CV)领域,形成了ViT。 一、Vision Transformer概述 ViT是一种基于Transformer架构的图像分类模型,它打破了传统卷积神经网络(CNN)在图像处理中的局部感知野限制。ViT将输入图像分割成一系列固定大小的patches,然后将这些patches线性展开为向量,这些向量作为Transformer的输入序列。通过多层自注意力机制,ViT能捕获不同位置patch之间的全局依赖关系,实现对复杂图像特征的有效提取。 二、ViT模型结构 1. Patch Embedding:图像被切割成多个小块(如16x16像素的patches),然后将每个patch转换为一个一维向量。这个过程通常伴随线性投影,以增加通道维度,与Transformer的输入尺寸相匹配。 2. Positional Encoding:由于Transformer无法内建空间位置信息,所以需要添加位置编码(Positional Encoding)来保留图像的空间顺序信息。 3. Transformer Encoder:核心部分是多层Transformer encoder,包含自注意力层和前馈神经网络(FFN),它们通过残差连接和层归一化构成。自注意力层允许模型考虑每个位置patch与其他所有位置的关系,而FFN则进行非线性变换。 4. Classification Head:在Transformer编码器之后,通常会接一个全连接层作为分类头,用于输出最终的类别概率。 三、猫狗二分类项目流程 1. 数据预处理:收集并整理猫和狗的图像数据集,可能需要进行数据增强,如随机翻转、裁剪、缩放等,以增加模型的泛化能力。 2. 模型构建:根据上述ViT结构搭建模型,选择适当的模型大小(如ViT_base或ViT_large)和训练参数。 3. 训练阶段:利用优化器(如Adam)和损失函数(如交叉熵)对模型进行训练。调整学习率、批次大小等超参数,以达到最佳性能。 4. 验证与调优:在验证集上评估模型性能,根据验证结果进行模型调整,如增加训练轮数、调整学习率策略等。 5. 测试与部署:在测试集上验证最终模型的性能,达到满意效果后,可以将其部署到实际应用中,实现猫狗图像的实时分类。 四、Transformer的优势与挑战 优势: - 全局视野:ViT能够捕获图像中的全局信息,适用于捕捉跨区域的复杂关系。 - 并行计算:Transformer结构利于GPU并行计算,提高训练速度。 - 跨模态应用:Transformer的通用性使其能轻松应用于文本、图像、视频等多种模态数据。 挑战: - 数据需求:ViT通常需要大量的标注数据进行训练,这在某些资源有限的场景下是个挑战。 - 计算资源:相比传统的CNN,ViT可能需要更高的计算资源,特别是在大型模型上。 - 稳定性:模型训练初期可能会出现震荡或不稳定的情况,需要精细调整训练策略。 基于Vision Transformer(ViT)实现猫狗二分类项目实战是一个探索Transformer在计算机视觉领域的应用的实例,展示了Transformer模型在图像分类任务上的潜力。通过实践,我们可以深入了解Transformer的工作原理,并掌握其在实际项目中的应用技巧。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Vision Transformer(ViT)
    优质
    本项目运用Vision Transformer(ViT)模型对猫和狗的图片数据集进行二分类训练与测试,展示ViT在图像识别任务中的强大性能。 在本项目实战中,我们将深入探讨如何利用Vision Transformer(ViT)这一先进的深度学习模型进行图像分类任务,特别是猫狗二分类。Transformer模型最初由Vaswani等人在2017年提出,主要用于自然语言处理领域,但其独特的设计理念——自注意力机制,已经逐渐被引入到计算机视觉(CV)领域,形成了ViT。 一、Vision Transformer概述 ViT是一种基于Transformer架构的图像分类模型,它打破了传统卷积神经网络(CNN)在图像处理中的局部感知野限制。ViT将输入图像分割成一系列固定大小的patches,然后将这些patches线性展开为向量,这些向量作为Transformer的输入序列。通过多层自注意力机制,ViT能捕获不同位置patch之间的全局依赖关系,实现对复杂图像特征的有效提取。 二、ViT模型结构 1. Patch Embedding:图像被切割成多个小块(如16x16像素的patches),然后将每个patch转换为一个一维向量。这个过程通常伴随线性投影,以增加通道维度,与Transformer的输入尺寸相匹配。 2. Positional Encoding:由于Transformer无法内建空间位置信息,所以需要添加位置编码(Positional Encoding)来保留图像的空间顺序信息。 3. Transformer Encoder:核心部分是多层Transformer encoder,包含自注意力层和前馈神经网络(FFN),它们通过残差连接和层归一化构成。自注意力层允许模型考虑每个位置patch与其他所有位置的关系,而FFN则进行非线性变换。 4. Classification Head:在Transformer编码器之后,通常会接一个全连接层作为分类头,用于输出最终的类别概率。 三、猫狗二分类项目流程 1. 数据预处理:收集并整理猫和狗的图像数据集,可能需要进行数据增强,如随机翻转、裁剪、缩放等,以增加模型的泛化能力。 2. 模型构建:根据上述ViT结构搭建模型,选择适当的模型大小(如ViT_base或ViT_large)和训练参数。 3. 训练阶段:利用优化器(如Adam)和损失函数(如交叉熵)对模型进行训练。调整学习率、批次大小等超参数,以达到最佳性能。 4. 验证与调优:在验证集上评估模型性能,根据验证结果进行模型调整,如增加训练轮数、调整学习率策略等。 5. 测试与部署:在测试集上验证最终模型的性能,达到满意效果后,可以将其部署到实际应用中,实现猫狗图像的实时分类。 四、Transformer的优势与挑战 优势: - 全局视野:ViT能够捕获图像中的全局信息,适用于捕捉跨区域的复杂关系。 - 并行计算:Transformer结构利于GPU并行计算,提高训练速度。 - 跨模态应用:Transformer的通用性使其能轻松应用于文本、图像、视频等多种模态数据。 挑战: - 数据需求:ViT通常需要大量的标注数据进行训练,这在某些资源有限的场景下是个挑战。 - 计算资源:相比传统的CNN,ViT可能需要更高的计算资源,特别是在大型模型上。 - 稳定性:模型训练初期可能会出现震荡或不稳定的情况,需要精细调整训练策略。 基于Vision Transformer(ViT)实现猫狗二分类项目实战是一个探索Transformer在计算机视觉领域的应用的实例,展示了Transformer模型在图像分类任务上的潜力。通过实践,我们可以深入了解Transformer的工作原理,并掌握其在实际项目中的应用技巧。
  • 基于Vision Transformer (ViT)的项目:“大战”(识别)
    优质
    本项目采用Vision Transformer模型进行图像分类,专注于区分猫咪和狗狗。通过深度学习技术实现对两类动物图片的高度准确识别,挑战经典“猫狗大战”。 利用ViT模型实现图像分类的项目具有强大的泛化能力,能够适用于任何图像分类任务。只需调整数据集和类别数目参数即可完成不同的任务。本项目采用开源的“猫狗大战”数据集来演示如何进行猫狗分类。 该项目非常适合Transformer初学者使用,通过实践可以深入理解ViT模型的工作原理及其结构,并学习在具体的应用场景中如何应用该模型。项目的代码逻辑清晰、易于理解,适合各个层次的学习者参考和学习。它是入门深度学习以及掌握Transformer注意力机制在计算机视觉领域运用的优秀案例。
  • 基于Pytorch的Vision Transformer (ViT)在中的应
    优质
    本研究探讨了利用Pytorch框架下的Vision Transformer(ViT)模型进行图像分类的应用。通过实验分析其性能优势与局限性,为视觉任务提供新的解决方案。 本段落介绍了一个使用Pytorch实现Vision Transformer(ViT)进行图像分类的项目源码。
  • PyTorch
    优质
    本项目使用Python深度学习框架PyTorch搭建卷积神经网络模型,旨在实现对图像中猫与狗的有效分类。通过大量标注数据训练优化模型性能,展示深度学习在图像识别领域的应用。 使用PyTorch实现了一个简单的猫狗分类项目,采用全连接网络结构。该项目有助于理解数据加载过程、网络搭建以及训练流程。
  • 深度学习
    优质
    本项目运用深度学习技术,致力于区分图像中的猫与狗。通过训练大规模数据集,模型能够准确识别并分类这两种常见的宠物动物。 1. 使用Kaggle上的“猫与狗”数据集中的train文件。 2. 实现对数据集的加载、读取和划分,并将图片转化为相同尺寸;展示每个类别的前5张图片; 3. 利用torch或tensorflow框架建立卷积神经网络模型并画出网络结构图,必要时可以添加注释说明; 4. 训练模型,输出迭代训练过程中的损失值、准确率和测试集的准确率等参数(测试集准确率达到75%以上);从图像中可以看出,在训练过程中,准确度逐步上升,并基本稳定在90%以上。 5. 可以与现有或改进后的其他模型进行对比;保存该模型。随机抽取十张图片做测试结果验证,概率准确率需达到95%以上。
  • 使PyTorch
    优质
    本项目利用深度学习框架PyTorch构建了一个用于区分猫和狗图像的分类模型,展示了如何处理图像数据并训练卷积神经网络。 使用PyTorch实现了一个简单的猫狗分类项目。该项目采用全连接网络架构,并可用于学习数据加载过程、神经网络搭建以及训练流程。
  • DEiT应DEiT.zip
    优质
    本资源提供基于Transformer架构的DEiT模型在图像分类任务中的应用案例和实践指导,包含代码、数据集及实验结果分析。 DEiT是Facebook在2020年提出的一种Transformer模型。该模型解决了Transformer难以训练的问题,并且仅用三天时间通过4块GPU完成了ImageNet的训练,在没有使用外部数据的情况下达到了SOTA水平。
  • CNN在Oxford-IIIT-Pet数据集上识别
    优质
    本研究采用卷积神经网络(CNN)技术,在Oxford-IIIT-Pet数据集上训练模型以实现对宠物猫和狗的精准分类,探索深度学习在动物图像识别中的应用。 猫狗分类使用的是牛津-IIIT宠物数据集。任务是对数据集中显示的每种动物进行分类。首先对猫和狗之间的品种进行分类,然后分别对猫和狗的不同品种进行分类,最后将不同种族混合在一起进行分类以增加难度。 步骤如下: 第一步:获取数据集 运行命令 `bash utils/get_dataset.sh` 第二步:预处理数据集 运行命令 `bash run_all_preprocessing.sh` 第三步:创建训练模型 运行命令 `bash run_all_models.sh` 第四步:要使用TensorBoard,请在新终端中输入以下命令,然后在浏览器中打开。 ``` tensorboard --logdir=./logs --port=6006 ```
  • 基于VIT(视觉变换器)的数据集识别项目
    优质
    本项目运用视觉变换器模型对猫和狗的数据集进行高效的二分类图像识别,旨在探索深度学习在动物图像分类中的应用潜力。 本项目基于VIT(vision transformer)迁移学习进行图像分类。模型已训练完毕,可以直接运行,在配备8个GPU的服务器上经过200个epoch的训练后,准确率达到0.995。资源中包含了一个猫狗二分类数据集。如需使用自己的数据集进行训练,请查阅README文件中的相关说明。
  • PyTorchKaggle识别的方法
    优质
    本文介绍如何使用PyTorch框架在Kaggle平台上开展猫狗图像分类竞赛。通过深度学习技术提升模型准确率,并分享实践经验和技巧。 今天分享一篇使用Pytorch进行Kaggle猫狗图像识别的文章,具有很好的参考价值,希望能为大家提供帮助。一起看看吧。