
基于MPC控制的路径跟踪算法,支持自定义路径#MPC #LQR #无人驾驶,Carsim,MPC横向控制,PID速度控制,路径跟随...
5星
- 浏览量: 0
- 大小:None
- 文件类型:ZIP
简介:
本研究开发了一种基于模型预测控制(MPC)和线性二次型调节器(LQR)相结合的路径跟踪算法,适用于无人驾驶车辆。该算法在CarSim仿真平台上验证了其有效性,通过MPC实现横向精确控制,并使用PID控制策略来调整车速,确保车辆能够准确地沿着自定义路径行驶。
基于模型预测控制(MPC)的路径跟踪算法是无人驾驶领域的一项关键技术,在复杂交通环境中能够实现车辆精确操控。通过预测未来一段时间内系统的动态响应,优化当前时刻的控制输入,从而改善路径跟踪性能。该技术的核心在于满足车辆动力学约束的前提下,解决在线优化问题以实时计算最优控制序列。
在无人驾驶中,有效的路径跟踪系统不仅要遵循预定路线行驶,还需具备应对障碍物或紧急情况的能力,并自动执行变道或避撞操作。MPC控制器因其能够在短时间内预测未来行为并进行调整,特别适合动态变化的环境应用。
路径跟踪算法直接影响到无人驾驶汽车的安全性和舒适性。传统方法如PID控制虽然简单高效,但缺乏对未来状态的预测和规划能力,在复杂道路条件下表现不足。相比之下,MPC技术能够综合考虑多种约束条件(包括车辆的位置、速度、加速度及行驶环境),确保在保持路径精度的同时避免碰撞。
LQR算法是一种用于线性系统最优控制的经典方法,当应用于MPC框架时可以增强局部控制器的稳定性和响应性能。结合使用这两种技术不仅可获得全局优化效果,还能保证良好的局部控制质量。
CARSIM是一款广泛使用的车辆动力学仿真软件,能够模拟各种复杂驾驶条件,并为路径跟踪算法开发提供支持。通过在该软件中进行仿真实验,研究者可以在无风险条件下调试和改进MPC策略。
SIMULINK是MATLAB的一个附加产品,提供了用于多域系统建模、分析及实现的交互式图形环境与定制工具集。借助SIMULINK可以构建包含MPC控制器在内的复杂模型,并通过仿真来评估系统的性能表现。
实际应用中,改良后的MPC控制算法代码需考虑数学模型和实时计算效率问题,以适应更多驾驶场景并提高执行速度和稳定性。相关文档资料涵盖了路径跟踪技术的研究进展、实施挑战及发展趋势等方面的内容,结合图片与文本可以直观理解MPC设计原理及其效果。
全部评论 (0)


