Advertisement

电感和电容的计算。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该工具能够迅速确定电容和电感的频率谐振点。它显著地加速了设计师的设计流程,从而有助于提升整体生产能力。在调试阶段,该工具同样可以得到广泛的应用,避免了设计师需要耗费大量时间和精力进行手动计算。只需输入所对应的频率和数值即可获得结果。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • BOOST升压路中.doc
    优质
    本文档详细介绍了在BOOST升压电路设计过程中,如何进行关键元件——电感与电容的选择及参数计算,为工程师提供实用的设计参考。 文档《BOOST升压电路的电感、电容计算.doc》包含了关于如何在BOOST升压电路中进行电感与电容选择的相关内容。
  • BOOST升压路中.pdf
    优质
    本PDF文档深入探讨了在BOOST升压电路设计中的关键元件——电感和电容的选择与计算方法,为电力电子领域的工程师和技术人员提供实用指导。 关于BOOST升压电路的电感和电容计算的相关内容可以参考一些技术文档或书籍。这些资料通常会详细介绍如何根据所需的输出电压、输入电压范围以及负载电流来选择合适的电感值,同时也会给出选取合适电容的方法以确保电路稳定性和效率。
  • 频率.exe
    优质
    电感电容频率计算.exe是一款用于电子电路设计的专业软件,能够快速准确地计算包含电感和电容元件电路的工作频率,帮助工程师优化电路性能。 快速计算电容和电感的频率谐振点可以显著提高设计师的工作效率,并有助于提升产能。在调试过程中也可以广泛应用这种方法,无需花费时间进行人工计算。只需输入相应的频率与数值即可完成计算。
  • BOOST、BUKC、逆变表.rar_BOOST与BUKC
    优质
    本资源包含BOOST和BUCK电路中所需电感的设计与计算方法,以及相关的逆变电容参数,附带详细的计算表格,方便电子工程师进行高效准确的电路设计。 关于BOOST电感、BUKC电感以及逆变电容的详细计算表格,请参考以下内容:电感计算表提供了详尽的数据支持,方便进行相关参数的精确计算。
  • 测试仪
    优质
    本项目专注于设计一款高效、精确的电容和电感测试仪,旨在为电子工程师提供便捷准确的测量工具。通过创新技术优化仪器性能,适用于多种应用场景,满足专业需求。 本段落介绍了电容电感测试仪的测量原理及电路设计方法。该仪器采用STC89C51单片机作为核心计算单元,并使用LC三点式振荡电路进行测量,通过固定值的电感与电容构成LC振荡回路。单片机负责控制频率测量并利用内置频率计测得分频后的信号频率,进而根据谐振频率公式间接推算出待测元件(即电容器或电感器)的具体数值。此方案在进行电容和电感测试时具备电路结构简单且设备体积小巧的优点。
  • 及滤波频率
    优质
    本课程专注于电子工程领域中的关键概念,涵盖如何计算和分析电容与电感元件以及设计有效的滤波电路。通过学习不同类型的滤波器及其频率特性,参与者将掌握优化信号处理的技术。 在电路设计中计算电容与电感的值,并将它们组合成滤波电路。接下来需要根据这些元件参数来确定滤波电路的工作频率。
  • 什么是寄生?PCB寄生
    优质
    本文章介绍寄生电感的概念,并提供计算PCB布局中寄生电容和电感的方法,帮助工程师优化电路设计。 寄生电感是PCB过孔设计中的一个重要考虑因素,在高速数字电路的设计过程中尤为重要。相比于寄生电容的影响,过孔的寄生电感往往更具破坏性。这种串联电感会削弱旁路电容的效果,并降低整个电源系统的滤波性能。 我们可以使用以下公式来估算一个过孔的大致寄生电感: \[L = 5.08h \left[\ln\left(\frac{4h}{d}\right) + 1\right]\] 其中,\(L\)表示过孔的电感值;\(h\)代表过孔的高度(长度);而\(d\)则是中心钻孔直径。 从该公式可以看出,虽然过孔直径对寄生电感的影响相对较小,但其高度却有着显著影响。以一个具体例子为例:如果假设过孔高度为0.05米且钻头直径为0.01米,则可计算出: \[L = 5.08 \times 0.05\left[\ln\left(\frac{4\times 0.05}{0.01}\right) + 1\right] = 1.015nH。\] 若信号的上升时间是1纳秒,其等效阻抗大约为: \[XL=\pi L/T_{10-90} \approx 3.19Ω.\] 当高频电流通过时,这样的阻抗已经不容忽视。尤其需要注意的是,在将旁路电容连接到电源层和地层的过程中通常需要穿过两个过孔,这会使寄生电感加倍。 此外,PCB上的通孔同样存在寄生电容问题。假设在铺有接地金属的区域中的钻头直径为\(D_2\),焊盘直径为\(D_1\),而电路板厚度记作\(T\)(基材介电常数用\(\varepsilon\)表示),那么可以计算出该通孔寄生电容的具体数值。
  • 时间
    优质
    本简介探讨了如何计算电容在电路中的充电与放电时间常数,涉及RC电路的基本原理及其应用。 L 和 C 组件被称为“惯性元件”,因为电感中的电流以及电容器两端的电压都有一定的“电惯性”,无法突然改变。充放电时间不仅与 L、C 的容量有关,还受到充/放电路中电阻 R 的影响。“1UF 电容它的充放电时间是多长?”这个问题没有提及电阻,因此无法回答。 RC 电路的时间常数 τ = RC。 充电时的公式为 uc=U×[1-e(-t/τ)] ,其中 U 是电源电压; 放电时的公式为 uc=Uo×e(-t/τ) ,这里 Uo 表示放电前电容上的电压。 RL 电路的时间常数 τ = L/R。 对于 LC 电路接入直流,电流 i 的变化遵循 i=Io[1-e(-t/τ)] ,其中 Io 是最终稳定后的电流值; 而当 LC 电路处于短路状态时,电流随时间的变化可以用公式 i=Io×e(-t/τ) 来描述。