Advertisement

On the Barzilai-Borwein Method

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了Barzilai-Borwein方法在优化问题中的应用与改进,分析了其收敛性及效率,并提出了一些新的算法变种。 求解无约束优化问题的一种有效方法是BB法。这是一篇关于BB法的综述文章,可以了解当前BB法的研究现状。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • On the Barzilai-Borwein Method
    优质
    本文探讨了Barzilai-Borwein方法在优化问题中的应用与改进,分析了其收敛性及效率,并提出了一些新的算法变种。 求解无约束优化问题的一种有效方法是BB法。这是一篇关于BB法的综述文章,可以了解当前BB法的研究现状。
  • 基于Barzilai-Borwein梯度法改进的最速下降法Matlab实现
    优质
    本研究提出了一种结合Barzilai-Borwein (BB)梯度法与传统最速下降法的优化算法,并提供了该方法在MATLAB环境下的具体实现,旨在提高非线性优化问题求解效率。 最优化算法实验课的代码包括了使用Matlab实现的最速下降法,并且步长更新采用了BB法。
  • The Finite Element Method by Zienkiewicz O.C.
    优质
    《The Finite Element Method》由著名学者Zienkiewicz O.C.撰写,是有限元分析领域的经典著作,详细介绍了该方法的基本原理和应用。 这是一套很好的有限软教程的英文版本,分为三册。
  • The Finite Element Method with MATLAB Code
    优质
    本书《The Finite Element Method with MATLAB Code》详细介绍了有限元方法的基本理论和实践应用,并提供了丰富的MATLAB代码实例。适合工程、数学及相关领域的学生与研究人员参考学习。 The_Finite_Element_Method_Using_MATLAB_Second_Edition.rar
  • The Primal-Dual Method in Approximation Algorithms
    优质
    本文介绍了近似算法中的一种重要技术——原始对偶方法,并探讨了其在多种问题中的应用和效果。 ### 近似算法:原对偶方法概览 本段落档主要介绍了近似算法中的一个重要方法——原对偶方法(Primal-Dual Method),并详细解释了该方法的基本原理及其在设计近似算法时的应用。 #### 原对偶方法概述 解决优化问题,尤其是面对NP难问题时,原对偶方法提供了一种有效的解决方案。该方法的核心思想是通过构造原始问题和其对应的对偶问题,并寻找满足一定条件的近似解来解决问题。 **原始问题(Primal Program, P)**的形式可以表示为: \[ \begin{aligned} & \text{minimize } \sum_{j=1}^{n} c_j x_j \\ & \text{subject to } \sum_{j=1}^{n} a_{ij} x_j \geq b_i, i = 1, ..., m \\ &\quad\quad\quad\; x_j \geq 0, j = 1, ..., n \end{aligned} \] 其中,\(c_j\) 是目标函数的系数,\(a_{ij}\) 是约束条件中的系数,\(b_i\) 是不等式的右侧值。 **对偶问题(Dual Program, D)**的形式如下: \[ \begin{aligned} & \text{maximize } \sum_{i=1}^{m} b_i y_i \\ & \text{subject to } \sum_{i=1}^{m} a_{ij} y_i \leq c_j, j = 1, ..., n \\ &\quad\quad\quad\; y_i \geq 0, i = 1, ..., m \end{aligned} \] **互补松弛条件(Complementary Slackness Conditions)**是原对偶方法的关键概念之一,它确保了原始问题和其对偶问题之间的联系。 - **原始互补松弛条件**:对于每个 \(1 \leq j \leq n\) ,要么 \(x_j = 0\),要么 \(\sum_{i=1}^{m} a_{ij} y_i = c_j\) - **对偶互补松弛条件**:对于每个 \(1 \leq i \leq m\) ,要么 \(y_i = 0\),要么 \(\sum_{j=1}^{n} a_{ij} x_j = b_i\) #### 原对偶方法的设计原则 在设计近似算法时,通常不会同时满足所有的互补松弛条件。原对偶方法提供了两种方式来放宽这些条件,从而找到可行解。 1. **确保原始条件,并适当放宽对偶条件**: - 对于每个 \(1 \leq i \leq m\) ,要么 \(y_i = 0\),要么 \(b_i \leq \sum_{j=1}^{n} a_{ij} x_j \leq \beta b_i\) 其中\(\beta > 1\)。 2. **确保对偶条件,并适当放宽原始条件**: - 对于每个 \(1 \leq j \leq n\) ,要么 \(x_j = 0\),要么 \(\frac{c_j}{\alpha} \leq \sum_{i=1}^{m} a_{ij} y_i \leq c_j\) 其中\(\alpha > 1\)。 如果采用第一种方式,即确保原始条件而放宽对偶条件,则有如下引理: **引理1**:如果 \(x\) 和 \(y\) 分别是原始问题 P 和对偶问题 D 的可行解,并且满足上述条件,则: \[ \sum_{j=1}^{n} c_j x_j \leq \beta \sum_{i=1}^{m} b_i y_i \] 更一般地,令 \(alpha = 1\) 如果原始条件得到满足,\(beta = 1\) 如果对偶条件得到满足,则有以下引理: **引理2**:如果 \(x\) 和 \(y\) 分别是原始问题 P 和对偶问题 D 的可行解,并且满足上述条件,则: \[ \sum_{j=1}^{n} c_j x_j \leq alpha cdot beta sum_{i=1}^{m} b_i y_i \] #### 基于原对偶方法的近似算法设计步骤 1. **将给定的问题表述为整数规划(Integer Programming, IP)**。放松变量约束以获得原始线性规划问题 P,然后找到对应的对偶问题 D。 2. **从零开始构建解**: - 选择一个初始可行解。 - 根据对偶问题 D 来指导迭代过程,逐步改进解的质量。 - 在每一步
  • Introduction to the Finite Element Method (Scan Edition)
    优质
    《有限元方法导论(扫描版)》是一本介绍有限元分析基础概念和技术的入门书籍,适用于工程和科学领域的学生及专业人士。 Hardcover: 912 pages Publisher: McGraw-Hill Science/Engineering/Math; 3rd edition (January 11, 2005) Language: English ISBN-10: 0072466855 ISBN-13: 978-0072466850
  • An Initial Course in the Finite Element Method
    优质
    《An Initial Course in the Finite Element Method》是一本介绍有限元方法基础概念和应用的教材,适用于工程学和物理学专业的学生。书中通过实例详细讲解了如何使用有限元法解决实际问题。 这是一本关于有限元方法的电子书,提供高清版本,是最新且经典的著作,并以英文版呈现。
  • The Lattice Boltzmann Method: Principles and Practice (2017)
    优质
    《The Lattice Boltzmann Method: Principles and Practice》是一本深入介绍格子玻尔兹曼方法原理与应用实践的专业书籍,为理解复杂流体动力学问题提供了有力工具。 内容详尽,并详细讲解了LBM代码的执行过程,非常适合初学者阅读。