Advertisement

CMOS混频器设计技术.rar

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源为《CMOS混频器设计技术》压缩文件,内容涉及使用CMOS工艺进行射频电路中混频器的设计与优化。包含理论分析、仿真验证及案例研究等多方面知识。适合从事RFIC设计的技术人员和相关专业学生参考学习。 CMOS混频器的设计技术涉及将射频信号转换为适合处理的中频或基带信号的过程。这一设计需要考虑诸如线性度、噪声系数以及功耗等因素,以实现高性能的无线通信系统。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • CMOS.rar
    优质
    本资源为《CMOS混频器设计技术》压缩文件,内容涉及使用CMOS工艺进行射频电路中混频器的设计与优化。包含理论分析、仿真验证及案例研究等多方面知识。适合从事RFIC设计的技术人员和相关专业学生参考学习。 CMOS混频器的设计技术涉及将射频信号转换为适合处理的中频或基带信号的过程。这一设计需要考虑诸如线性度、噪声系数以及功耗等因素,以实现高性能的无线通信系统。
  • 2.4GHz动态CMOS在RFID中的
    优质
    本研究聚焦于2.4GHz频段下CMOS分频器的设计与优化,旨在提升射频识别(RFID)系统性能,通过创新电路结构和低功耗算法实现高效能的无线通信。 摘要:本段落对当前主流的高速CMOS分频器进行分析与比较,并基于此设计了一种采用TSPC(True Single Phase Clock)及E-TSPC(Extended TSPC)技术的前置双模分频器电路,该设计显著提升了工作频率。仿真结果表明,在使用0.6um CMOS工艺参数并以5V电源电压供电的情况下,最高工作频率可达3GHz,功耗仅为8mW。 关键词:锁相环;双模前置分频器;源极耦合逻辑;单相时钟;扩展单相时钟 1 引言 分频器作为锁相环电路中的基本组件,在整个系统中承担着至关重要的角色。特别是在工作频率较高的应用场景下,其性能直接影响到整体系统的效能表现。
  • 基于ADS的CMOS双平衡
    优质
    本研究聚焦于采用先进的电路设计技术(ADS)进行CMOS双平衡混频器的设计与优化,旨在提升其在无线通信系统中的性能表现。 本段落分析了Gilbert结构有源双平衡混频器的工作原理,并探讨了转换增益、线性度与跨导及CMOS沟道尺寸等相关电路参数之间的关系。基于这些研究,使用ADS软件进行了设计和优化工作。
  • 基于CMOS的ADS双平衡
    优质
    本研究探讨了采用CMOS工艺的ADS(Advanced Design System)技术设计双平衡混频器的方法,旨在优化射频前端电路性能。通过理论分析与仿真验证,提出了一种新型结构以实现低功耗、高线性度及宽带宽特性,适用于无线通信系统中的频率转换模块。 本段落介绍了一种使用ADS软件设计的CMOS双平衡混频器。通过参考相关设计方案,确定了转换增益、噪声系数以及1dB压缩点等关键参数,并利用ADS软件中的调谐功能进行了仿真测试。该设计采用了Gilbert结构,能够满足大于10dB的转换增益、小于10的噪声系数和超过0dBm的1dB压缩点的要求。
  • -平衡
    优质
    简介:本文探讨了混频器的设计原理与实现方法,特别聚焦于平衡混频器的结构优化和性能提升,旨在为射频通信系统提供更高效的解决方案。 二、平衡混频器 Vj2以相反极性安装,因此混频器的中频电流同相并构成迭加输出。 混频管与电桥之间的匹配电路将混频管阻抗调整为50欧姆。电桥的所有端口均为Z0 = 50欧姆。1~2臂和3~4臂的特性阻抗是Z0,而2~3臂和1~4臂也是。 本振的相位噪声通过l口进入电桥,并在Vj1和Vj2中混成的中频噪声相互抵消,因此大大削弱了本振噪声的影响。这是平衡混频器的重要特性之一。 平衡混频器中有部分组合频率成分会在中频端口相互抵消。在这类分支电桥型设计中,被抵消的频率成分是m(fs + fp),其中m = 1,2,3...等整数。 图9-8 展示了典型的分支电桥平衡混频器结构。每个臂长为λg/4,这里的λg是指本振和信号平均频率对应的微带波长。通常情况下,中频较低时fs ≈ fp,因此以下讨论中的微带波长均不特指是针对fs还是fp。 输入的本振fp通过电桥第l口进入并被均匀分配至两只混频管Vj1和Vj2;信号fs则从第2口输入,并同样地经过电桥后到达这两只混频管。两个微波接地由低阻抗开路线在Sl和S2点构成,分别连接到Vjl和另一支路的相应位置。
  • 基于RFID的1V 2.4G CMOS高线性度
    优质
    本研究针对基于RFID的1V 2.4GHz系统,设计了一种高性能CMOS混频器,实现了低功耗和高线性度的优化平衡。 本段落介绍了一种低电压且高线性度的CMOS射频混频器设计方法,在LC折叠式共源共栅结构的基础上通过并联一个弱反向区工作的辅助MOS管来提升其性能。采用TSMC0.18μm RF CMOS工艺仿真结果表明,此改进方案在不显著影响增益、功耗及噪声等主要参数的前提下,使三阶交调点(IIP3)提高了6dB。 随着无线通信技术的发展,如无绳电话、手机和无线局域网设备已经成为人们生活中不可或缺的一部分。射频收发机中的核心组件之一就是混频器,其性能直接决定了整个系统的效能。为了满足现代通讯设备向高性能、低电压消耗及小型化发展的需求,研究开发出具备低功耗与高线性度特性的混频器已成为当前的重要课题。
  • 第七讲 (Part 01).rar
    优质
    本讲座为《混频器设计》系列课程的第一部分,深入探讨了混频器的基本原理和工作模式,并介绍了其在通信系统中的应用。通过理论讲解与实例分析相结合的方式,帮助学习者掌握混频器的设计方法和技术要点,是电子工程及通信领域不可多得的学习资源。 从原理图可以看出,我们使用TSMC的NMOS管搭建了吉尔伯特混频器单元。所有晶体管的长度采用了该工艺的特征尺寸0.18um,宽度则根据设计需求中的增益和噪声等指标进行优化。电路中部分射频放大级的NMOS管宽度为100um,这是Design Kit所能支持的最大值。
  • 探讨
    优质
    本文深入探讨了混频器的设计原理与优化方法,分析了影响混频器性能的关键因素,并提出了一种新型混频器架构。 在通信技术领域,信号的频率变换是一个常见的需求。通常情况下,需要将一个已调制的高频信号转换为另一个较低频段内的同类已调信号。完成这种频率转换功能的电路被称为变频器或混频器。 例如,在超外差接收机中,天线接收到的高频信号(位于535至1605千赫兹之间的普通调幅波)会被通过变频过程转换为465kHz的中间频率信号。同样地,在超外差式广播接收机里,载频介于88到108兆赫兹范围内的各调频电台信号会转变为中频频段为10.7MHz的调频信号;而在电视接收设备中,则将四十几至近千兆赫兹之间的电视台信号转换成38MHz的视频中间频率。 混频器在高频电子线路及无线电技术领域中的应用非常广泛。无论是进行调制过程还是解调操作,输入基带信号需经过变换成高频已调信号的过程;而在接收端,则需要将接收到的已调高频频段内的信号转换成相应的中频信号以便于处理和解析。
  • 改进型2.4GHz CMOS上变电流模式
    优质
    本设计介绍了一种改进型2.4GHz CMOS上变频电流模式混频器。采用新型电路结构优化了性能,显著降低了噪声和功耗,在无线通信系统中具有广泛应用前景。 本段落介绍了一种低功耗上转换电流模式混频器的设计方案,采用特许0.18-μm RFCMOS技术来实现2.4 GHz频段发射器前端的构建。该设计能够将10 MHz中频(IF)信号转换为2.4 GHz射频信号,并在本地振荡器频率为2.39 GHz时,提供2 dBm功率输出。相比传统的电压模式上变频混频器,此设计方案展示了更低功耗和更高性能的优势。 仿真结果显示,在2.4 GHz工作条件下,该电路可达到6.5 dB的转换增益以及15.3 dBm的输入参考三阶交调点(IIP3),同时仅消耗了在1.2V电源电压下的5.7 mA电流。整个芯片面积仅为0.7毫米× 0.8毫米。