Advertisement

如何正确使用示波器测量电源纹波

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本篇文章详细介绍了使用示波器准确测量电源纹波的方法和技巧,帮助读者掌握正确的测试步骤与参数设置。 电源纹波测试是衡量电源质量的关键参数之一,但如何准确测量电源纹波一直是工程师面临的技术难题。其实解决方法往往就在细节之中。 直流稳压电源通常由交流电经过整流、滤波及稳压等步骤形成,在这一过程中不可避免地会在输出的直流电压中残留一些交流成分,这部分叠加在直流电压上的交流分量即被称为“纹波”。 一、不正确的纹波测试 使用ZDS2024 Plus示波器进行电源纹波测量时,若接入一个3.3V的信号,并设置探头档位为X10。点击【Auto Setup】后,通过调整水平扫描时间(即时基)、垂直灵敏度和偏移量等参数,可以完成初步的测量设定。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 使
    优质
    本篇文章详细介绍了使用示波器准确测量电源纹波的方法和技巧,帮助读者掌握正确的测试步骤与参数设置。 电源纹波测试是衡量电源质量的关键参数之一,但如何准确测量电源纹波一直是工程师面临的技术难题。其实解决方法往往就在细节之中。 直流稳压电源通常由交流电经过整流、滤波及稳压等步骤形成,在这一过程中不可避免地会在输出的直流电压中残留一些交流成分,这部分叠加在直流电压上的交流分量即被称为“纹波”。 一、不正确的纹波测试 使用ZDS2024 Plus示波器进行电源纹波测量时,若接入一个3.3V的信号,并设置探头档位为X10。点击【Auto Setup】后,通过调整水平扫描时间(即时基)、垂直灵敏度和偏移量等参数,可以完成初步的测量设定。
  • 优质
    本文详细介绍如何使用示波器准确测量电源纹波的方法和技巧,帮助读者掌握正确的设置参数、探头选择及数据分析方法。 电源纹波测试是评估电源质量的关键环节之一,但如何准确地进行这项测量却困扰着许多工程师。其实解决这个问题的方法往往就在我们身边。 直流稳压电源通常是由交流电经过整流、滤波及稳压等步骤形成的,在这个过程中不可避免地会在输出的直流电压中残留一些交流成分,这部分叠加在稳定直流电压上的交流分量被称为纹波。 一种不正确的测试方法是在ZDS2024 Plus示波器上接入一个3.3V电源信号,并将探头档位设为X10。完成设置后点击【Auto Setup】按钮,通过调整水平时基、垂直档位和偏移量,可以得到纹波的测量结果如图所示(此处省略了具体的图片描述)。
  • TI-的方法
    优质
    本文介绍了如何正确地测试电源纹波的方法,帮助读者理解电源质量的关键指标,并掌握实用的测量技巧。 如何正确测试电源的纹波?详细解释如何正确测试开关电源纹波。 1. 准备必要的仪器:在进行纹波测量之前,需要准备一台高质量的示波器以及低通滤波器等辅助设备。 2. 连接电路:将待测电源输出端与示波器输入端连接,并确保接地良好。如果有必要的话,可以使用一个电阻来降低电压以适应示波器的量程要求。 3. 设置测量条件:根据被测电源的工作频率选择合适的低通滤波器截止频率,然后调节示波器的时间基和幅度设置以便于观察纹波信号。 4. 观察并记录结果:在稳定状态下仔细观察显示屏上的纹波电压,并做好详细的数据记录。注意区分高频噪声和其他干扰因素。 通过上述步骤可以准确地测试出开关电源的输出端口是否存在明显的纹波现象及其具体数值大小,从而判断该设备是否符合预期性能标准或者需要进一步优化改进之处。
  • 捕获
    优质
    本教程详细介绍了使用示波器捕捉和分析电子信号波形的方法与技巧,帮助工程师和技术人员提高测试效率。 下面简要介绍如何使用泰克示波器进行信号捕捉。我一直不太会用这个设备,现在分享一下我的学习心得。希望对大家有所帮助。
  • 子仪使方法
    优质
    本简介将详细介绍示波器等电子仪器的基本操作和使用技巧,帮助读者掌握其测量原理与实践应用。 示波器是一种用途广泛的电子测量仪器,不仅可以直接显示电信号的波形,还能对信号的各种参数进行精确测量。以下几点值得注意: 1. 寻找扫描光迹:将Y轴显示方式设置为“Y1”或“Y2”,输入耦合方式设为“GND”。开机预热后,如果显示屏上没有出现光点和扫描基线,可以通过调节亮度旋钮、触发方式开关置“自动”以及适当调整垂直(VOLTS/DIV)与水平(TIME/DIV)位移旋钮来找到位于屏幕中央的扫描光迹。示波器设有“寻迹”按键时,可以利用它判断光迹偏移基线的方向。 2. 双踪显示:双踪示波器通常提供五种不同的显示模式:“Y1”、“Y2”、“Y1+Y2”,以及两种双踪显示方式——交替和断续。其中,“交替”适用于高频信号,而“断续”则更适合低频输入。 3. 稳定的触发设置:为确保波形稳定地出现在屏幕上,通常将“触发源选择”开关设在“内”。如果在此基础上仍无法获得稳定的显示效果,则可以尝试切换到“常态”,并通过调节触发电平旋钮来找到合适的电压值。即使选择了较慢的扫描速率导致光迹闪烁的情况下,只要信号波形没有沿X轴左右移动,这依旧视为稳定显示。 4. 优化测量参数:通过调整扫描速率与Y轴灵敏度开关以确保屏幕上展示一个或两个周期内的被测信号波形。在测量电压时,请将“Y轴灵敏度微调”旋钮置于校准位置;同样地,在频率测试中,需要把“X轴扫速微调”旋钮也设定在校准状态。“扩展”旋钮的位置需注意调整以获得准确读数。 5. 函数信号发生器:这类设备能够产生正弦波、方波和三角波三种类型的输出信号。其最大电压可达20伏峰峰值,通过衰减开关与幅度调节旋钮实现从毫伏级到伏特级的连续变化。频率调整可通过分档开关完成。 6. 使用交流毫伏表时应注意:该设备仅适用于测量正弦波形的有效值,并且在使用前应将量程设置为较大范围,随后根据实际情况逐步缩小至所需测量区间内以避免过载损坏仪器。
  • 将方转换为
    优质
    本教程详细介绍了从理论到实践的步骤,教你如何通过滤波器或其他电子电路技术有效地将方波信号转化为平滑的正弦波信号。 将方波转换为正弦波可以通过脉宽调制(PWM)和低通滤波器实现。PWA可能指的是脉宽调整技术,在此过程中可以使用单频率低通滤波器来优化信号质量。
  • 减少DC-DC噪声
    优质
    本文将探讨如何有效降低DC-DC转换器中的纹波和噪声问题,介绍常用的方法和技术手段。 1. 纹波的定义 纹波指的是在直流电压或电流上叠加的一种有规律的交流分量。实际应用中的电压和电流并非恒定不变,而是包含一系列波动,这些波动具有固定的频率,并被称为纹波。 2. 噪声的定义 噪声是指存在于纹波之上的非连续且无规则出现的电压或者电流尖峰。换句话说,它指的是叠加在纹波上的一系列杂乱信号。图1详细展示了什么是纹波和噪声的概念。 3. 纹波与噪声的危害 当电源中的纹波和噪声过大时,它们可能会干扰运算放大器(运放)的工作性能,并影响AD或DA模块的正常运行,导致整个设备的整体表现显著下降。 4. 如何减少纹波与噪声 为了降低由开关器件动作产生的纹波和噪声,在设计阶段工程师需要根据实际情况采取措施来优化电路设计。
  • 使Pico进行音频频谱分析
    优质
    本教程详细介绍使用Pico示波器开展音频频谱分析的方法与技巧,帮助用户掌握信号捕捉、频谱图绘制等关键步骤。 ### 如何使用Pico示波器进行音频频谱分析 #### 一、频谱分析仪概述 频谱分析仪是一种用于测量和分析信号频率成分的重要工具。根据工作原理的不同,主要分为两类:“扫频”频谱分析仪和FFT(快速傅里叶变换)频谱分析仪。 - **扫频频谱分析仪**:这类仪器通过一个或多个可变带宽的滤波器在不同的频率点上测量信号强度,并绘制出振幅随频率变化的关系图。对于音频信号而言,该类设备的一个缺点是需要在整个测试期间保持输入信号稳定不变。 - **FFT频谱分析仪**:这种类型的分析仪首先通过模数转换(ADC)将模拟信号转化为数字数据,然后使用快速傅里叶变换计算出信号的频率成分。这种方法的优势在于能够捕捉瞬态事件或脉冲,比如敲击鼓面产生的声音。在利用PicoScope示波器时,可以通过设定触发条件来捕获这些瞬间变化。 #### 二、FFT频谱分析的关键参数 选择合适的FFT频谱分析仪需要考虑以下两个关键因素: - **采样率**:决定了仪器能够显示的最大频率范围。对于音频信号的测试,为了覆盖20kHz带宽,通常建议至少使用40kS/s(每秒采集4万个样本)的采样速率;如果要评估放大器等设备的性能,则可能需要更高的采样率。 - **动态范围**:指仪器区分不同强度信号的能力。大多数基于PC或台式机上的示波器分辨率通常为8位,即256个等级,最大动态范围约为48dB。而PicoScope 3224、3424及ADC-212等型号具有更高的分辨率(如12位),能够提供72dB的动态范围;而高端设备如ADC-216则拥有高达100dB的最大动态范围,这对于捕捉音频信号中的细微变化至关重要。 #### 三、音频分析示例 为了展示PicoScope在实际应用中表现如何,我们选择了两款不同类型的CD播放器进行测试:一款是经济型手持式设备和另一款则是高端Quad CD机。以下是具体的实验步骤及结果: - **手持式CD播放器**:当输入1kHz的纯音信号时,在主频之外还观察到了二次、三次以及五次谐波,表明存在一定的失真现象;并且在接近18kHz的位置检测到一个峰值噪声,这可能是由于内部电源转换造成的。 - **Quad CD机**:相比之下,高端设备的表现更加纯净。除了主要频率外的其他成分几乎不可见,且通过自动音频测量功能可以直观地显示信号质量。 #### 四、其他重要指标 - **串扰**:衡量两个声道之间相互干扰程度的一项标准,在手持式播放器中左右声道间的串扰下降了60dB;而高端Quad CD机则至少达到90dB。 - **频率响应**:理想的音频设备应该在整个频谱范围内保持平坦的特性。对于测试的手持CD播放器,其在20Hz至20kHz范围内的波动不超过3dB。 PicoScope是一款适用于各种复杂与简单音频分析任务的强大工具,无论是在质量检查还是工程开发中都能提供可靠的数据支持。
  • 总谐失真(THD)及相关参数.pdf
    优质
    本文档深入探讨了如何精确测量总谐波失真(THD)及其他相关音频信号质量参数的方法和技巧,为电子工程师及音响爱好者提供了详实的操作指南。 本段落探讨了与谐波失真相关的参数测量方法,包括总谐波失真(THD)、THD+N、SINAD、信噪比(SNR)、有效位数(ENOB)、非线性度(NL)以及峰均功率比(SFDR)。这些测试在音频、电声学、供电和振动等领域均有应用。尤其在音频行业,对失真测量的准确性要求尤为严格。 虽然计算总谐波失真等参数的公式并不复杂,并且数字信号分析方法看似简单易行,但要确保准确度却并非易事。这需要仔细选择多个关键参数并理解其背后的逻辑原因,因为任何一个参数的选择不当都可能导致整个测试结果失效。这些关键因素包括但不限于:测试信号频率、采样率、采样精度(位数)、数据采集长度以及快速傅里叶变换点数等。 本段落将深入讨论在进行总谐波失真测量时可能遇到的各种技术挑战和问题,旨在帮助读者更好地理解和掌握相关领域的知识。
  • 设计STM32数字
    优质
    本教程详细介绍如何使用STM32微控制器设计一款数字示波器,涵盖硬件选型、电路设计及软件编程等关键步骤。 随着集成电路技术的进步以及数字信号处理技术的应用,数字示波器已经成为一种集显示、测量、运算、分析与记录等功能于一体的智能化测试设备。其性能正在逐步超越传统的模拟示波器,并有取代后者的趋势。相比传统示波器,数字示波器不仅具备存储波形数据、体积小巧、低功耗和易于操作等优点,还拥有强大的实时信号处理及分析功能。因此,数字示波器的使用越来越普遍。 然而,在我国市场上自主研发的高性能数字示波器数量仍然较少,大多数使用的还是国外产品。鉴于此情况,有必要对高性能数字示波器进行广泛且深入的研究与开发。 本段落通过采用高速、高精度元器件设计了一款实时采样率为60 MS/s(每秒百万样本)的宽带数字示波器。接下来将详细介绍该设备的关键性能参数设定。