Advertisement

PyTorch对ENet的实现。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
PyTorch-ENet ENet的PyTorch(v1.1.0)版本已从作者提供的lua-torch实现中移植过来。 该实现已经过在CamVid和Cityscapes这两个数据集上的验证测试。 目前,可以获取在CamVid和Cityscapes数据集上训练得到的预训练模型的版本。 以下是数据集的输入分辨率、批量大小以及对应的平均IoU(百分比)、GPU内存(GiB)和训练时间的数据: | 数据集 | 输入分辨率 | 批量大小 | 平均IoU(%) | GPU内存(GiB) | 训练时间(小时) | | ---------- | ----------- | -------- | ------------ | --------------- | ---------------- | | 1班 | 480x360 | 10 | 51.08 | 3 | 4.2 | | | | | | | | | 2班 | 1024x512 | 4 | 59.03 | 5.4 | 20 | 在处理类别数量时,通常会排除无效或未标记的类别。 请注意,实施、数据集以及硬件配置的变更可能会导致结果出现显著差异。 参考硬件包括Nvidia GTX 1070和AMD Ryzen 5 3600处理器,其主频为3.6GHz。 此外,您可以通过训练约100个周期来获得与上述结果相似的平均IoU值,偏差约为±2%。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PyTorch-ENet: PyTorchENet
    优质
    简介:PyTorch-ENet是在PyTorch框架下对ENet模型的高效实现,适用于实时语义分割任务,尤其针对移动设备和嵌入式系统进行了优化。 PyTorch-ENet 是 ENet 的 PyTorch(v1.1.0)实现版本,移植自作者的 lua-torch 实现。此实现已在 CamVid 和 Cityscapes 数据集上进行了测试,并提供了在这些数据集中训练得到的预训练模型。 以下是不同配置下的性能指标: - 输入分辨率为 480x360 的情况下:批量大小为 11,经过约 300 次迭代后可达到平均 IoU(%)51.08%,在 GPU 内存占用量约为 3GiB 的条件下训练时间大约是 2 小时。 - 输入分辨率为 1024x512 的情况下:批量大小为 19,经过约 300 次迭代后可达到平均 IoU(%)59.03%,在 GPU 内存占用量约为 4GiB 的条件下训练时间大约是 4 小时。 - 输入分辨率为未知的第三种情况:批量大小为 20,经过约 100 次迭代后可达到类似平均 IoU(%)的结果,但具体数值未给出。 在以上所有情况下,“无效/未标记”的类别均被排除在外。提供的结果仅供参考;不同的实现、数据集和硬件配置可能会导致显著差异的性能表现。参考设备为 Nvidia GTX 1070 和 AMD Ryzen 5 3600(频率:3.6GHz)。
  • PyTorch-GAN:基于PyTorch生成抗网络
    优质
    PyTorch-GAN是一款基于PyTorch框架开发的库,专注于提供多种生成对抗网络(GAN)模型的高效实现。该库简化了GAN的研究和应用过程,使开发者能够快速上手并进行创新实验。 该存储库已不再更新维护,因为我目前无法投入时间进行维护。如果您有兴趣作为合作者继续开发,请通过电子邮件与我联系。 PyTorch-GAN 是一个包含生成对抗网络的 PyTorch 实现集合的研究项目。虽然模型架构可能不完全遵循原始论文中的描述,但我更注重传达核心思想而非精确配置每一层。我们非常欢迎任何对 GAN 的贡献和建议。 安装说明如下: ``` $ git clone https://github.com/eriklindernoren/PyTorch-GAN $ cd PyTorch-GAN/ $ sudo pip3 install -r requirements.txt ``` 实现内容包括辅助分类器生成对抗网络,由奥古斯都·奥德纳(Augustus Odena)、克里斯托弗·奥拉(Christopher Olah)和乔纳森·希伦斯(Jonathon Shlens)提出。
  • Pytorch中index_select()函数理解与
    优质
    本文章深入探讨并解释了PyTorch框架中的`index_select()`函数,通过具体示例帮助读者理解如何从张量中选择特定索引的数据。 本段落主要介绍了Pytorch中的index_select()函数的实现理解,并通过示例代码进行了详细的讲解。内容对于学习或工作中使用该功能的人来说具有一定的参考价值,有需要的朋友可以继续阅读以获取更多信息。
  • PyTorch-YOLO-v3:基于PyTorchYOLO v3象检测算法
    优质
    简介:PyTorch-YOLO-v3是基于PyTorch框架实现的一种高效的物体检测模型,它继承了YOLO v3算法的优势,能够快速准确地识别图像中的目标。 这个存储库是为我正在进行的研究提供驱动代码的。由于我刚从大学毕业,并且在申请硕士学位前忙于寻找研究实习职位,目前我没有时间处理相关问题。感谢你的理解。 该仓库包含了基于YOLOv3实现的对象检测器的代码。此代码是在官方代码和原版YOLOv3的PyTorch端口基础上开发而成的,旨在通过移除不必要的冗余部分来优化原始版本(官方代码包括了序列模型等未被YOLO使用的内容)。同时我尽可能地简化了代码,并对其进行了详细的文档记录。 如果你想要了解如何从头开始自行实现这个检测器,可以阅读我在Paperspace上撰写的非常详尽的五篇教程系列。这对那些希望从中级向高级过渡的人来说非常适合。 目前该代码仅包括检测模块,但训练模块很快就会推出。
  • Faster-RCNN(Pytorch:更快速度
    优质
    本项目基于Pytorch框架实现了Faster R-CNN模型,并进行了一系列优化以显著提升其运行速度,适用于实时目标检测任务。 进度提示(已终结) 完成README-工程代码部分:整体代码提交与测试 日期:2018年6月6日 - 完成代码提交 日期:2018年6月6日 - 完成代码测试 日期:未具体说明 完成README部分内容 日期:2018年6月7日 此程序基于Pytorch实现Faster-RCNN功能。参考的代码具有健壮性,具备齐全的功能且易于使用,但因其规模庞大而不便于阅读学习。 本代码目的在于方便理解和掌握faster-rcnn的技术细节;如需应用于实际项目,则建议采用上述提及的参考代码。 本代码在确保基础功能的前提下,对数据处理部分进行了整理,并为模型部分添加了注释。开发环境设置如下:Ubuntu16.04(i5-7500 + GTX 1070Ti) + python3.5 + Pytorch0.3.0 文件夹说明: Data: picture_data/Annotations--用于存放图片标注的xml文件,需手动添加。
  • RetinaNet-PyTorch: RetinaNetPyTorch
    优质
    RetinaNet-PyTorch是基于PyTorch框架对RetinaNet目标检测模型的高效实现,适用于各种图像识别任务,助力科研与开发。 视网膜网络是Pytorch中的RetinaNet实现,使用ResNet作为主干网络和FPN。它基于某些代码进行开发。 以下是训练步骤: 1. 下载PASCAL VOC 2012 trainval数据集并解压缩至“{root_dir}/VOCdevkit/..”。 2. 克隆此仓库。 ``` git clone git@github.com:qqadssp/RetinaNet.git cd RetinaNet ``` 3. 下载预训练权重: ``` cd checkpoint wget https://download.pythorch.org/models/resnet50-19c8e357.pth cd .. ``` 4. 初始化模型: ``` python init.py ``` 5. 修改“config”中的配置文件。对于VOC数据集,请用您的{root_dir}修改“TRAIN: DATASETS_DIR”。
  • DSOD-PyTorch: DSODPyTorch
    优质
    简介:DSOD-PyTorch是基于深度可分离卷积的面向对象检测网络DSOD的PyTorch版本,适用于目标检测任务。 DSOD-火炬是Pytorch中的一个实现版本。它基于原始代码和实现在PASCAL VOC数据集上进行训练,并且损失趋于收敛,但是不确定能否达到与原论文相同的分数。需要进一步的调整和完善。 为了运行此项目,您需要安装Python 2.7以及Torch 0.4。首先下载仓库: ``` git clone git@github.com:qqadssp/DSOD-Pytorch.git cd DSOD-Pytorch ``` 然后下载并解压缩Pascal VOC数据集,并将其路径设置为{root_dir}/VOCdevkit。 接着,修改`torchcv/utils/config.py`中的`opt.train_img_root`以使用正确的图像路径。启动visdom服务器后开始训练: ``` python -m visdom.server python train.py main ```
  • PointRendPyTorch-PointRend-PyTorch
    优质
    简介:PointRend-PyTorch是PointRend模型的开源实现,提供高效的目标检测与分割功能,适用于多种计算机视觉任务。 PointRend 是一种图像分割技术,在此项目中使用 PyTorch 实现了 PointRend 的“仅语义分割”功能,并应用于 PascalVOC 数据集上。项目的许多细节与论文中的可行性检查有所不同,其中包括复制图5的部分内容。 该项目在狗的图片上展示了不同策略下的采样点,并提供了参考图像供对比查看。 使用说明如下: 首先,在修复数据路径时,请注意多 GPU 训练的具体操作方法,详情请参阅单 GPU 训练部分。对于多 GPU 训练: ``` python3 -m torch.distributed.launch --nproc_per_node={your_gpus} main.py -h ``` 对于单 GPU 训练: ``` python3 main.py -h ```
  • DQNPytorch: Pytorch-DQN
    优质
    Pytorch-DQN项目采用流行的深度学习框架PyTorch实现了经典的深度Q网络(DQN)算法。它为强化学习爱好者和研究者提供了一个易于理解且灵活的学习资源。 最初的Q学习使用表格方法来解决问题,在状态数量增加的情况下遇到了挑战,因为表无法存储环境中存在的数亿个可能的状态组合。例如,在一个210x180黑白像素的游戏环境中,将有$ 2 ^ {180 * 210} $种不同的可能状态,这使得表格方法变得不可行。 DeepMind通过结合深度学习和Q-learning开发了DQN(基于深度神经网络的Q学习),从而解决了这个问题。具体来说,他们用CNN或DNN替代了传统的表格,并引入了一个目标网络来执行Bellman方程更新以稳定模型训练过程。此外,为了进一步提高性能,还采用了经验回放技术:通过一个存储所有过去状态、动作和下一个状态对的缓冲区进行采样并用于训练模型。 综上所述,DQN利用深度神经网络近似Q值,并采用目标网络与经验重放缓冲机制以稳定学习过程。