Advertisement

STM32外部上升沿触发的ADC采样

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本简介探讨了如何使用STM32微控制器实现外部信号上升沿触发的ADC(模数转换器)采样功能。通过配置GPIO与EXTI线,结合ADC中断设置,实现在检测到输入信号电平由低转高时自动启动ADC转换,适用于精确测量瞬态信号的应用场景。 通过外部PB11口捕获上升沿来触发ADC采样,欢迎大家下载。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32沿ADC
    优质
    本简介探讨了如何使用STM32微控制器实现外部信号上升沿触发的ADC(模数转换器)采样功能。通过配置GPIO与EXTI线,结合ADC中断设置,实现在检测到输入信号电平由低转高时自动启动ADC转换,适用于精确测量瞬态信号的应用场景。 通过外部PB11口捕获上升沿来触发ADC采样,欢迎大家下载。
  • 沿与下降沿VI
    优质
    本VI介绍并演示了基于上升沿和下降沿触发的工作原理及其在数字信号处理中的应用。通过实例分析帮助理解触发机制的实现方式及作用。 利用LabVIEW实现了上升沿触发和下降沿触发的功能。这段描述可以简化为:通过LabVIEW实现的上升沿与下降沿触发功能。或者更简洁地表述为:使用LabVIEW完成了上升沿及下降沿触发机制的设计与实现。
  • GD32F405RGT6 ADCDMA
    优质
    本简介探讨了如何使用STM32微控制器系列中的GD32F405RGT6芯片进行ADC(模数转换器)的外部触发DMA配置,实现高效的数据采集与处理。 GD32F405RGT6的ADC可以通过外部触发启动DMA传输。
  • 关于沿与下降沿讨论
    优质
    本文探讨了数字电路中上升沿和下降沿触发的概念及其在时序逻辑设计中的应用,分析了各自的优缺点。 本段落介绍了FPGA中的上升沿触发和下降沿触发。
  • STM32 ADC精度方法
    优质
    本文章介绍如何提高STM32微控制器中ADC模块的采样精度,包括硬件调整和软件优化技巧。适合电子工程师参考学习。 该文档介绍了如何提高STM32F系列常用芯片ADC的采样精度。
  • PLC 沿与下降沿信号功能
    优质
    本内容介绍可编程逻辑控制器(PLC)中上升沿(Rising Edge)和下降沿(Falling Edge)触发信号的功能及其应用,帮助用户理解如何利用这些特性优化控制系统。 实用的PLC上升沿和下降沿触发信号库函数适用于顺序控制、连锁控制以及按键启停等情况,能够处理设备动作较为复杂的需求。
  • STM32 ADC
    优质
    简介:本内容专注于介绍如何使用STM32微控制器进行ADC(模数转换器)采样,涵盖硬件配置、软件编程及实际应用案例分析。 使用STM32单片机可以对电压和电流信号进行采样,并通过USART串口与上位机通信,在串口助手上显示采样的信号。
  • STM32 ADC
    优质
    简介:本文介绍如何使用STM32微控制器进行ADC(模数转换器)采样,包括配置步骤和编程技巧,帮助工程师实现精准的数据采集。 STM32 AD采样涉及使用STM32微控制器进行模拟信号的数字化转换过程。这通常包括配置ADC(模数转换器)模块、设置相关引脚以及编写软件代码以读取并处理采集到的数据。在实际应用中,需要根据具体需求选择合适的采样速率和分辨率,并确保系统时钟等参数正确配置,以便达到最佳性能和精度要求。
  • STM32】HAL库中断硬件下降沿示例
    优质
    本教程详细介绍了如何使用STM32 HAL库配置和实现外部中断功能,并具体演示了通过硬件下降沿触发的方式进行中断处理的方法。 本段落深入探讨了如何利用STM32的HAL库来配置和处理外部中断,特别是硬件下降沿触发模式。我们以广泛使用的STM32F103C8T6单片机为例进行讲解。 首先需要了解的是,中断是微控制器响应外部事件的一种快速机制。当外设引脚发生特定状态变化时(例如电平变化或脉冲),CPU会暂停当前执行的任务,转而处理中断服务程序。本例中我们关注的主要是外部中断线1(EXTI1)与GPIOA第1位(PA1)之间的连接。 配置PA1为硬件下降沿触发模式具体步骤如下: 第一步是初始化HAL库:调用`HAL_Init()`函数来设置系统时钟和其他必要的初始值。 第二步是配置GPIO端口,使用`HAL_GPIO_Init()`函数将PA1设为输入模式并启用中断。这需要把`GPIO_InitStruct.Pin`设定为GPIO_PIN_1,并且将`GPIO_InitStruct.Mode`设为GPIO_MODE_IT_FALLING。 第三步涉及EXTI线的设置:通过调用 `HAL_EXTI_GetHandle()` 获取 EXTI1 的句柄,然后使用 `HAL_EXTI_RegisterCallback()` 注册中断回调函数。此回调函数将在硬件下降沿触发时被激活。 第四步是编写中断服务例程(ISR),如`EXTI1_Callback()`函数,在这个例子中我们可以实现LED的亮灭翻转功能。这通常涉及对GPIO输出状态的操作,例如: ```c void EXTI1_Callback(void) { static uint8_t led_state = 0; HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_0); // 假设LED连接到PB0引脚 led_state = !led_state; } ``` 第五步是启用中断:通过调用`HAL_NVIC_EnableIRQ(EXTI1_IRQn)`来激活外部中断服务例程。 以上步骤完成后,当PA1检测到下降沿(例如按下按钮)时,将触发 `EXTI1_Callback()` 函数执行,并导致LED状态翻转。在实际应用中,这个基础框架可以扩展以处理更复杂的中断需求。 总结来说,本段落展示了如何使用STM32 HAL库配置外部硬件下降沿触发中断的一种方法,在STM32F103C8T6单片机上实现这一功能的步骤和细节。这种方法是许多嵌入式项目的基础,比如传感器数据采集、按键检测以及通信协议的实施等场景中都极为实用。通过深入理解和实践这些步骤,开发者可以更好地利用STM32微控制器的强大中断处理能力来提升系统的实时性和效率。
  • STM32利用TIM2ADC并通过DMA保存结果
    优质
    本项目介绍如何在STM32微控制器上配置定时器(TIM2)来周期性地触发模数转换器(ADC),并将采集的数据通过直接存储器访问(DMA)方式高效传输和保存。 ADC的速度由采样时间和转换时间的总和决定:TCONV = 采样时间 +12.5个ADC时钟周期。采样时间有8种选择,分别为1.5、7.5、13.5、28.5、41.5、55.5、71.5和239.5。如果ADC的时钟频率为14MHz,则最高ADC采样频率为 14/(12.5+1.5)=1MHz。