Advertisement

基于MATLAB的拣货路径优化及六自由度机械臂动态路径规划(RRT方法)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究运用MATLAB平台,采用快速启发式算法(RRT)优化拣货路径,并实现六自由度机械臂的动态路径规划,旨在提高仓储自动化系统的效率和灵活性。 拣货路径优化的MATLAB代码用于Lynx机器人(6-DoF机械手)上的动态平滑RRT规划器。该程序的主要功能包括: 1. 模拟函数:runsim.m 2. 静态规划生成函数(主函数):SRRT.m 3. 动态规划的生成函数:regrow.m 此外,还有一些辅助的功能和模块: - 示例函数:sample.m - 在空间中选择随机节点:RandomNode.m - 邻居查找功能:neighbor.m - 节点扩展功能:extend.m - 碰撞检测功能:DetCol.m - 路径优化函数:path_opt.m 为了评估规划器的平滑度,我们在不同的静态地图中进行了模拟。具体来说: 1. 静态模拟结果展示了随机样本和epsilon-greedy样本之间的比较。 2. 原始路径与经过修剪后的路径也进行了对比。 对于动态性能的评估,在MATLAB环境中可视化3D移动障碍物较为困难,因此我们将其应用在不断变化环境中的导航点机器人上。以下是一些场景的结果: 1. 场景一:随机移动门 2. 场景二:棘手迷宫

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLABRRT
    优质
    本研究运用MATLAB平台,采用快速启发式算法(RRT)优化拣货路径,并实现六自由度机械臂的动态路径规划,旨在提高仓储自动化系统的效率和灵活性。 拣货路径优化的MATLAB代码用于Lynx机器人(6-DoF机械手)上的动态平滑RRT规划器。该程序的主要功能包括: 1. 模拟函数:runsim.m 2. 静态规划生成函数(主函数):SRRT.m 3. 动态规划的生成函数:regrow.m 此外,还有一些辅助的功能和模块: - 示例函数:sample.m - 在空间中选择随机节点:RandomNode.m - 邻居查找功能:neighbor.m - 节点扩展功能:extend.m - 碰撞检测功能:DetCol.m - 路径优化函数:path_opt.m 为了评估规划器的平滑度,我们在不同的静态地图中进行了模拟。具体来说: 1. 静态模拟结果展示了随机样本和epsilon-greedy样本之间的比较。 2. 原始路径与经过修剪后的路径也进行了对比。 对于动态性能的评估,在MATLAB环境中可视化3D移动障碍物较为困难,因此我们将其应用在不断变化环境中的导航点机器人上。以下是一些场景的结果: 1. 场景一:随机移动门 2. 场景二:棘手迷宫
  • RRT
    优质
    本研究探讨了基于RRT(快速扩展随机树)算法对六自由度机械臂进行路径规划的方法,旨在优化复杂环境中的运动效率和灵活性。 本段落介绍了Funuc某型号六自由度机械臂的模型建立、正逆运动学推导,并求解了八组逆解。此外,还应用RRT算法进行了无碰撞路径规划,并在关节空间中使用五次多项式插值轨迹进行路径生成(通过Matlab程序实现)。
  • 优质
    本研究聚焦于六自由度机械臂的高效路径规划技术,旨在探索算法优化策略,以实现精确、快速及安全的操作性能。 6自由度机械臂路径规划的Matlab版本涉及使用编程技术来设计和实现一种能够高效、准确地进行路径规划的方法,适用于具有六个独立运动轴的机器人手臂。这种方法通常包括定义机械臂的工作空间、确定目标位置以及计算从起始点到终点的最佳路径等方面的内容。在实际应用中,通过编写相应的Matlab代码可以模拟并优化机械臂的动作轨迹,从而提高其操作效率和精度。
  • 学与
    优质
    本研究探讨了六自由度机械臂的运动学特性及其实现精确控制的方法,并针对其路径规划进行了深入分析和实验验证。 六自由度机械臂的运动学与路径规划是实现其精准控制及任务执行的关键技术。其中,运动学分析包括正向运动学和逆向运动学两个方面:**正向运动学**旨在根据已知关节角度计算末端执行器的位置和姿态;而**逆向运动学**则是在给定目标位置与姿态的情况下求解所需的关节配置或位姿。由于逆运动问题可能有多个解决方案,通常需要采用数值方法或者优化算法来获得准确的结果。 路径规划涉及为机械臂的终端装置设计一条从起点到终点的安全且高效的行进路线,在此过程中必须综合考量机械臂的工作空间限制、障碍物规避策略以及执行特定任务的需求。常见的路径规划技术包括基于图论的方法(如A*搜索)、优化算法(例如遗传算法和粒子群优化)及采样策略(比如快速探索随机树RRT)。通过结合运动学分析与路径规划设计,六自由度机械臂能够在各种复杂环境中实现精确流畅的动作,并完成预定任务。
  • 避障探讨
    优质
    本论文深入探讨了六自由度机械臂在复杂环境中的避障路径规划问题,旨在提出高效、准确的算法方案,提升机器人操作灵活性和安全性。 希望这段内容能对学习机械臂路径规划的朋友们有所帮助,并可供参考。
  • 遗传算器人
    优质
    本研究运用遗传算法优化六自由度机器人的动作路径,旨在提高其在复杂环境中的自主导航与操作效率。 遗传算法用于解决6自由度机器人机械臂的运动路径问题(使用MATLAB编写源程序)。
  • MATLAB仿真PUMA560RRT
    优质
    本研究利用MATLAB仿真平台,针对PUMA560机器人进行快速随机树(RRT)路径规划算法的应用与优化,探索其在复杂环境中的高效导航能力。 【项目资源】:包含前端、后端、移动开发、人工智能、物联网、信息化管理、数据库、硬件开发、大数据以及课程资源,毕业设计等各种技术项目的源码。包括C++、Java、Python、web(如HTML/CSS/JavaScript)、C#和EDA等项目的源码。 【适用人群】:适用于希望学习不同技术领域的初学者或进阶学习者。可作为毕设项目、课程设计、大作业或工程实训的参考,同时也适合初期项目立项时使用。 【附加价值】:这些项目具有较高的学习借鉴价值,可以直接拿来修改和复刻。对于有一定基础或者热衷于研究的人来说,在此基础上进行修改和扩展以实现其他功能是完全可能的。 【沟通交流】:在使用过程中遇到任何问题都可以随时提出,我们会及时解答并提供帮助。欢迎下载和使用这些资源,并鼓励大家互相学习、共同进步。
  • MATLAB仿真PUMA560RRT.zip
    优质
    本资源提供了一种利用MATLAB实现的快速树(RRT)算法,用于进行PUMA560机器人手臂的有效路径规划。包含详细的代码和仿真案例,适用于研究与教学。 基于MATLAB仿真的Puma560机械臂RRT路径规划算法研究
  • MATLAB仿真PUMA560RRT.zip
    优质
    该资源提供了一种基于MATLAB仿真环境下的PUMA560机器人手臂快速随机树(RRT)路径规划算法,适用于机器人学研究与教学。 MATLAB仿真是一种利用MATLAB软件进行的数值计算和模拟实验的技术,在工程设计、科学实验、数据分析以及经济领域有着广泛的应用。由美国MathWorks公司开发的MATLAB是一款强大的商业数学工具,适用于数值分析、图像处理及信号处理等领域。 在工程技术方面,工程师们使用MATLAB来进行系统的设计与性能评估等任务。他们可以利用该软件进行控制系统设计、信号处理和通信系统的研发等工作,并通过仿真功能预测并优化产品的性能,在产品制造前提升其质量和可靠性。例如,Simulink模块库提供了丰富的工具来创建和管理复杂的动态模型。 在科学研究领域,MATLAB同样扮演着重要角色,支持科学家们开展数学建模、专业模型模拟以及复杂数值计算等工作。无论是物理学还是化学等学科的研究者都能够利用该软件进行数据分析及图像处理工作,以提高实验的精确度与效率。 经济分析也是MATLAB仿真的一个重要应用场景。经济学家可以使用它来进行数据评估和预测未来趋势的工作,并为政策制定提供支持依据。 此外,在商业领域中,金融行业、市场营销以及制造业也能从MATLAB仿真技术中受益匪浅。例如在金融市场里利用该软件进行风险管理和投资决策;而在制造行业中,则用于质量控制及生产计划等方面的应用。 综上所述,为了更好地掌握并应用MATLAB仿真技术,用户需要具备一定的数学和编程基础,并且熟悉相关领域的背景知识与应用场景。选择合适的工具箱以及不断学习更新专业知识也是提高使用效果的关键要素。
  • MATLAB与Adams联合仿真模型
    优质
    本研究构建了一种基于MATLAB和Adams软件的六自由度机械臂路径规划联合仿真模型,旨在优化机械臂运动控制策略。该模型结合了两者的优点,实现了复杂环境下的高效路径规划与动态分析。 本段落介绍了一种六自由度机械手臂路径规划的MATLAB与Adams联合仿真模型。该模型利用MATLAB对六自由度机械臂进行路径规划,并控制Adams中的模型(在Adams中,六自由度机械手由Solid Works创建)完成空间画圆和直线的动作。轨迹数据将在MATLAB和Adams软件中输出展示。