Advertisement

Arduino-TLC5926: 适用于TLC5926移位寄存器的Arduino库

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
Arduino-TLC5926是一款专为TLC5926移位寄存器设计的Arduino库,简化了LED矩阵和复杂照明项目的编程工作。 适用于Arduino的TLC5926库支持与TLC5926 / TLC5927(16位移位寄存器)通信。“慢速”模式使用digitalWrite或shiftOut而非SPI,全局亮度功能通过PWM实现且无需阻塞。该库还考虑到/ OE引脚是反向的,并应该适用于TLC5916 / TLC5917:将“链接在一起的数字”分成两半。模式宽度为2个移位寄存器宽。 此库支持获取诊断信息(如短路、断开和过热情况),并且可以设置电流增益值。它兼容使用2到4条信号线,其中最小配置包括SDI与CLK,而最小控制线假设LE连接至CLK,并且/ OE接地。 该库提供了两种闪烁模式:容易可见的移动时数据闪烁以及无闪烁显示直到图案结束的数据,在后一种情况下需要额外的LE引脚和将/OE引脚接地。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Arduino-TLC5926: TLC5926Arduino
    优质
    Arduino-TLC5926是一款专为TLC5926移位寄存器设计的Arduino库,简化了LED矩阵和复杂照明项目的编程工作。 适用于Arduino的TLC5926库支持与TLC5926 / TLC5927(16位移位寄存器)通信。“慢速”模式使用digitalWrite或shiftOut而非SPI,全局亮度功能通过PWM实现且无需阻塞。该库还考虑到/ OE引脚是反向的,并应该适用于TLC5916 / TLC5917:将“链接在一起的数字”分成两半。模式宽度为2个移位寄存器宽。 此库支持获取诊断信息(如短路、断开和过热情况),并且可以设置电流增益值。它兼容使用2到4条信号线,其中最小配置包括SDI与CLK,而最小控制线假设LE连接至CLK,并且/ OE接地。 该库提供了两种闪烁模式:容易可见的移动时数据闪烁以及无闪烁显示直到图案结束的数据,在后一种情况下需要额外的LE引脚和将/OE引脚接地。
  • Arduino UNO ATMega168/328列表
    优质
    本资源提供了Arduino UNO开发板中ATMega168和ATMega328微控制器的所有寄存器详细列表,是深入了解硬件底层操作及编程的重要参考。 最近在进行Arduino开发时发现使用AVR芯片操作UNO非常高效。然而,我记不住各种底层寄存器的细节,在研究技术手册后总结了一份方便快捷的中断寄存器列表。
  • SBus-ArduinoSBUS接收及伺服Arduino
    优质
    SBus-Arduino是一款专为SBUS接收器和伺服器设计的Arduino库,简化了无人机遥控信号的处理与解析过程,支持开发者快速接入SBUS接口进行硬件开发。 斯伯-阿杜伊诺该库可与SBUS接收器和伺服电机进行通信,并且可以使用Arduino IDE编程环境。SBUS是一种总线协议,用于将来自接收器的命令传输到伺服电机。 不同于PWM(脉宽调制),SBUS利用了一种串行总线架构,这意味着一条数据线路能够连接多达16个伺服电机,每个电机接收一个独特的控制信号。SBUS通信采用反向逻辑,并且波特率为100,000 bps、8位数据长度以及偶数校验和2位停止的设置。 每条SBUS消息由25字节组成: - 字节[0]:SBUS头,值为 0x0F - 字节 [1 - 22]:包含来自16个伺服通道的数据,每个通道占用了11位的信息空间。 - 字节 [23]:包括以下信息的标志字节: - 第7位(0x80)代表第17号伺服电机 - 第6位(0x40)表示第18号伺服电机 - 第5位(0x20)用于标记丢失的数据帧 - 第4位(0x10)指示故障安全模式的激活状态 - 字节 [24]:SBUS尾部,完成数据包传输。 当接收器和发送设备之间发生一帧数据丢失时,该信息会被记录。通常情况下,连续几帧的数据缺失将触发接收端进入所谓的“故障安全”运行模式。这种情形大约每10毫秒或两次通信周期内可能发生一次。
  • EDA四
    优质
    EDA四位移位寄存器是一种电子设计自动化工具中常用的数字逻辑电路模块,能够存储4位二进制数据,并通过时钟信号实现数据的左移或右移操作。 此设计方案使用CASE语句设计了并行输入输出的移位寄存器。通过进程中的顺序语句构建了时序电路,并利用信号赋值的并行特性实现了数据的移动功能。当CLK上升沿出现且MD为“101”时,加载待移位的数据;若MD为“001”,则执行带进位循环左移操作;当MD为“010”时,则进行自循环左移;如果MD是“011”,将执行自循环右移;而当MD为“100”时,会完成带进位的循环右移。此外,在其他情况下(即MD不等于上述任何值),系统保持不变状态,并输出经过移动后的数据和进位信息。
  • LabVIEW中
    优质
    在LabVIEW编程环境中,移位寄存器是一种特殊的数据存储机制,用于循环结构中传递和累积数据。它是实现状态保存、计数及历史记录等功能的关键组件。 在循环结构的应用中,常常需要将第i次迭代的结果作为第i+1次迭代的输入数据。LabVIEW中的移位寄存器功能恰好能够满足这种需求。要使用这一特性,在For或While循环框体的左侧或者右侧边缘点击右键,并从弹出菜单选择“添加移位寄存器”选项,即可完成设置。 图2和图3展示了在两种不同类型的循环(分别是For循环与While循环)中加入移位寄存器后的效果。值得注意的是,在任何情况下,移位寄存器都是成对出现在循环框的两侧:右侧端口仅能连接一个数据元素;而左侧则可以接受多个输入。 此外,移位寄存器的颜色会根据其存储的数据类型自动调整,并且当没有初始值时显示为黑色。
  • 桶形
    优质
    桶形移位寄存器是一种特殊的数字逻辑电路,能够高效地实现数据在多个位置之间的循环移位操作,在通信和加密领域有广泛应用。 使用Verilog硬件描述语言实现了64位移位寄存器的任意方向和规模的快速移位功能。
  • 电路
    优质
    移位寄存器电路是一种数字电路,能够存储并移动一系列二进制数据。它在通信、计数和延时等领域有广泛应用,是构建复杂系统的关键组件之一。 移位寄存器是数字电路中的重要组成部分,主要用于存储和移动数据。它的基本工作原理是利用时钟脉冲控制,使数据按照特定方向在一系列寄存单元之间进行转移。 移位寄存器的构造基于相同类型的寄存单元,这些单元的数量决定了寄存器的位数。每个单元的输出与相邻单元的输入相连,这种连接方式的不同可以实现不同类型的移位操作,例如右移或左移。同时,所有的寄存单元都共享一个公共时钟信号,确保在时钟脉冲的驱动下,所有单元同步工作。当时钟脉冲到来,数据会按照预设的方向(左或右)依次移动一位。 根据数据的输入和输出方式,移位寄存器主要分为串行输入和并行输入两种类型。串行输入是指数据逐位通过一个输入端进入寄存器,而并行输入则允许数据通过多个输入端同时进入。同样,输出也可以是串行或并行的。串行输出意味着数据按顺序从最后一个寄存单元逐位输出,而并行输出则是所有寄存单元同时提供输出。 在CMOS技术中,移位寄存器可以有多种组合形式,如仅支持串行输入和输出、仅支持并行输入和输出或同时支持这两种方式。例如,CD4006是一个18位的移位寄存器,由四个4位和五个5位的移位寄存器单元组成,能够实现数据的串行传输与存储;而CD4015则包含两个独立的4位串入并出移位寄存器。除了支持串行输入输出外,它还可以实现并行输出功能。 移位寄存器是数字系统中不可或缺的一部分,在数据处理、显示控制、延迟线路和串行通信等领域有广泛应用。理解其工作原理与特性对于设计和应用数字系统至关重要。
  • VHDL设计
    优质
    本项目旨在利用VHDL语言实现一个具备左移、右移功能的八位移位寄存器的设计与验证。通过模块化编程方法,确保了代码的可读性和复用性,并使用ModelSim进行了仿真测试以确认其正确性。 本段落主要介绍了八位移位寄存器的VHDL程序设计,希望能对你有所帮助。
  • Verilog8设计
    优质
    本项目基于Verilog语言实现了一个8位移位寄存器的设计与仿真,探讨了其在数字电路中的应用及其工作原理。 此程序是用Verilog语言编写的8位移位寄存器,并已通过验证。
  • Verilog8设计
    优质
    本项目基于Verilog语言设计并实现了一个8位移位寄存器。该模块能够高效地进行串行和并行数据传输,在数字系统中广泛应用,如通信接口等场景。 这本书详细地讲解了这项技术的原理及其要点,对于初学者来说是一个很好的选择。