Advertisement

进程管理的操作系统实验报告

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本实验报告详细探讨了在操作系统课程中进行的进程管理相关实验。通过创建、调度和同步进程,加深了对进程控制块、进程状态转换及并发问题的理解与实践操作能力。 使用C语言实现对N个进程采用某种进程调度算法(如先来先服务、时间片轮转或动态优先级调度)的调度。为了清晰地观察每个进程的被调度情况,程序应显示每个进程的具体调度过程。分析并讨论程序运行的结果,分享自己的收获和体会。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本实验报告详细探讨了在操作系统课程中进行的进程管理相关实验。通过创建、调度和同步进程,加深了对进程控制块、进程状态转换及并发问题的理解与实践操作能力。 使用C语言实现对N个进程采用某种进程调度算法(如先来先服务、时间片轮转或动态优先级调度)的调度。为了清晰地观察每个进程的被调度情况,程序应显示每个进程的具体调度过程。分析并讨论程序运行的结果,分享自己的收获和体会。
  • 优质
    本实验报告深入探讨了操作系统中的进程管理机制,通过理论与实践结合的方式,详细分析了进程创建、调度及同步等关键操作,并提出优化建议。 进程的软中断通信可以通过信号处理来实现。下面是一个示例代码: ```c #include #include #include #include int wait_flag; void stop() { wait_flag = 0; } int main( ) { int pid1, pid2; // 定义两个进程号变量 signal(SIGINT,stop); // 或者可以使用信号SIGTERM来处理终止请求 while((pid1 = fork()) == -1); if(pid1 > 0) { // 子进程创建成功,pid1为父进程的子进程标识符 while((pid2 = fork( )) == -1); if(pid2 > 0) { wait_flag = 1; kill(pid1, SIGUSR1); // 发送信号给第一个子进程以终止它 kill(pid2, SIGUSR2); // 同样发送第二个子进程的终止信号 wait(0); wait(0); printf(\nParent process is killed !!\n); exit(0); } else { wait_flag = 1; signal(SIGUSR2, stop); printf(\nChild process 2 is killed by parent !!\n); exit(0); } } else { wait_flag = 1; signal(SIGUSR1,stop); printf(\nChild process 1 is killed by parent !!\n); exit(0); } } ``` 进程的管道通信可以通过创建一个共享内存区域(即管道)来实现,下面是一个示例代码: ```c #include #include #include int pid1, pid2; // 定义两个进程变量 int main( ) { int fd[2]; char OutPipe[100], InPipe[100]; pipe(fd); while((pid1 = fork()) == -1); if(pid1 == 0) { lockf(fd[1], 1, 0); sprintf(OutPipe,\nChild process 1 is sending message!\n); write(fd[1], OutPipe, sizeof(OutPipe)); sleep(5); lockf(fd[1], 0, 0); exit(0); } else { while((pid2 = fork()) == -1); if(pid2 == 0) { lockf(fd[1], 1, 0); sprintf(OutPipe,\nChild process 2 is sending message!\n); write(fd[1], OutPipe, sizeof(OutPipe)); sleep(5); lockf(fd[1], 0, 0); exit(0); } else { wait(NULL); read(fd[0], InPipe, sizeof(InPipe)); printf(%s\n,InPipe); wait(NULL); read(fd[0], InPipe, sizeof(InPipe)); printf(%s\n,InPipe); exit(0); } } } ``` 这两个示例分别展示了如何通过信号和管道实现进程间的通信。
  • 设计
    优质
    本实验报告详细探讨了操作系统中进程管理系统的设计与实现。通过理论分析和实践操作,深入研究了进程创建、调度及同步机制等关键概念。 在Windows环境下进行实验:使用C语言编写一个程序来模拟进程的创建和撤消过程。通过终端键盘输入作业名称、大小以及优先级等相关信息后,系统将为这些作业创建相应的进程,并把与之对应的进程控制块(PCB)的内容输出到终端显示器上。 此外,该程序还需能够模拟内存空间对作业进行分配的过程,并以图形化的方式在终端中展示这一过程的结果。最后,在撤销进程中应按照优先级顺序执行操作,并通过显示PCB的撤消情况和相应的内存释放状态来体现整个进程管理流程的变化。
  • 与同步).doc
    优质
    本实验报告详细探讨了在操作系统课程中进行的进程管理和同步实验。通过理论分析和实践操作,深入理解了进程控制、互斥锁及信号量等概念的实际应用,并解决了相关的编程问题。 操作系统进程管理与同步实验报告 在操作系统内核功能中,进程管理和进程同步是两个核心方面。前者涉及对创建、执行、调度及终止的控制;后者则关注多个并发进程中协作机制的设计以确保系统稳定运行无竞争条件和死锁。 本项目的目的是让学生深入理解实现过程管理的方法,并掌握解决进程间同步问题的技术手段。实验要求学生熟悉银行家算法及其应用,同时探索如何利用该算法处理资源分配挑战。 主要内容包括: - 实现银行家算法来模拟调度流程。 - 构建读写者优先策略的解决方案。 - 开发安全性检查函数以支持银行家算法运作。 - 通过输入合法与非法请求验证系统性能。 实验步骤如下: 1. 学习和掌握安全性和银行家算法的基本原理; 2. 针对特定情景(例如,三种资源类型及五个进程),设计恰当的数据结构来表示每个进程的当前状态及相关信息; 3. 编写代码实现安全性检查函数,并编写主程序以动态获取并处理用户输入的信息,进而调用上述函数执行银行家算法; 4. 对系统进行测试,确保其能够正确响应各种可能的情况。 实验环境: - 使用Windows 2000操作系统 - 开发工具为Microsoft Visual C++ 6.0 源代码中包括了实现银行家算法所需的所有组件:数据结构定义、安全性检查函数及主程序。整个项目以C语言编写,使用到的库文件有malloc.h, stdio.h 和stdlib.h。 在上述代码里设计了一系列的数据类型来存储重要信息: - struct allocation用于记录每个进程已占用资源数量; - struct max表示各进程的最大需求量; - struct available则储存系统中未被使用的资源总数; - 结构体need用来跟踪各个任务还需多少额外的资源; - finish结构体标识了所有作业是否已经完成状态; - path类型定义了一条可能的任务执行路径。 此外,还编写了一个关键函数来判断在给定情况下能否安全地分配更多资源。此功能利用动态内存管理技术实现对资源的有效控制和释放操作。 主程序部分则负责从用户那里获取初始配置数据以及后续的请求,并通过调用之前定义的安全性检查器来进行决策过程。 实验结果展示了银行家算法能够有效地防止死锁的发生,同时保证系统不会陷入饥饿状态。这表明所开发的安全性函数确实可靠地完成了其预定目标。
  • Linux
    优质
    本实验报告详细探讨了在Linux环境下进行进程管理的各项操作,包括进程创建、调度与同步等内容,旨在加深读者对Linux系统内核机制的理解。 计算机操作系统教程第二版以及操作系统Linux进程实验报告的内容可以被重新表述如下: 关于学习资源,《计算机操作系统教程》的第二版是一个很好的选择;同时,在进行实际操作练习的时候,撰写一份详尽的操作系统Linux进程相关的实验报告也是非常有帮助的。 这样重写后保留了原文的核心信息,并且去除了不必要的链接和联系方式。
  • :文件内容
    优质
    本实验报告涵盖了操作系统课程中的核心实验,包括但不限于文件系统的操作和优化、进程创建与调度机制等内容。通过这些实践,加深了对操作系统内部工作原理的理解。 ### 操作系统实验(包含实验报告) #### 实验一:进程调度 **目的** 编写并调试一个使用高级语言实现的进程调度程序,加深理解进程概念及进程调度算法。 **内容与要求** 设计并调试一个模拟的进程调度程序,采用“简单时间片轮转法”进行五个进程的调度。每个进程中包含有一个进程控制块(PCB),其中可包括:进程名、到达时间、所需运行时间和已用时长等信息。这些数据可以人为设定或通过随机数生成。 **步骤** 1. 使用先来先服务算法,将所有进程按顺序加入就绪队列。 2. 检查是否所有逻辑队列均为空,若空则结束程序;否则从第一个非空队列中取出一个进程执行。 3. 若该运行中的进程在当前时间片内完成,则将其撤销;如未完成,则将此进程放入下一个队列的尾部继续等待调度。 4. 检查是否有新的到达进程,若有新到则插入至第一逻辑队列末尾。 5. 重复步骤2、3和4直到所有就绪队列为空。 **实验环境** - 硬件:IBM PC或兼容机 - 软件:C语言编程环境 #### 实验原理及设计方案 ##### 进程调度算法 采用多级反馈队列调度方式。新进程进入系统时,首先放置于第一个队列的末端,并按照先到先服务原则排队等待执行时间片。如果一个进程在一个时间片内完成,则准备结束;若未完成,则被移动至下一个逻辑队列末尾继续等待。 ##### 实验步骤 1. 按照FCFS算法将所有新到来的进程加入就绪状态队列。 2. 验证各逻辑队列是否为空,如全部空则实验终止。否则执行首个非空队列中的头一个进程。 3. 判断当前运行进程中止时的状态:若已完成,则移除该进程;反之将其送至下一个等待的队伍中排队等候下一次调度。 4. 检查是否有新的到来的进程需要加入,如果有则放置在第一个逻辑队列的最后位置准备调度。 5. 重复执行步骤2、3和4直至所有就绪状态队列为空。
  • 创建
    优质
    本实验报告详细探讨了在操作系统课程中进行的进程创建实验。通过理论与实践相结合的方式,深入理解进程的概念、特性及其实现机制,并使用具体的编程案例加以说明。 操作系统 进程创建实验报告调用fork()创建子进程的原理如下: 在UNIX系统中,进程既是独立拥有资源的基本单位也是调度的基本单元。每个进程实体由程序区、数据区、栈区及共享存储区等构成,并且这些区域被划分为若干页以方便管理。每一个进程中都配置了一个唯一的进程控制块(PCB),用于管理和控制进程。 1. 进程表项:包括一些最常用的核心信息,如PID和UID;状态描述符;内存地址以及软中断信号、计时域等。 2. U区:保存了与每个进程相关的私有数据。U区内含指针指向用户区域的开始位置,并且包含诸如文件描述符表在内的相关信息。 3. 系统区表项:记录各个段在物理存储器中的地址信息,以便实现内存中不同区域之间的共享和保护机制。 4. 进程区表:为每个进程提供了一张表格用于管理其独立的逻辑分区。这张表格帮助操作系统将虚拟地址空间映射到实际内存位置。 UNIX系统中的一个运行程序被称为“进程映像”,它由三个主要部分组成: 1. 用户级上下文,主要是用户编写的代码。 2. 寄存器上下文,包含CPU状态寄存器的值等信息。 3. 系统级上下文,包括操作系统用于管理此特定进程的数据。 涉及的关键系统调用之一是fork()。它创建一个新的子进程,并将当前正在运行的程序复制到新进程中去执行。其返回情况如下: - 0:表示函数在子进程中被调用。 - 大于零的整数:代表父进程中,该值等于刚创建出的新子进程ID。 - -1: 表示失败。 当fork()成功时,它会同时向父和新生成的子进程返回不同的结果。操作系统将为这个新的执行环境分配必要的资源,并设置适当的初始状态以确保它可以独立运行。这包括复制当前进程的所有文件描述符、目录项等信息给子进程并增加相应的引用计数。 总体而言,在成功调用fork()之后,父与子两个进程会同时并发地继续各自的程序流程,但它们的执行上下文都是从同一个起点开始的。
  • 调度
    优质
    本实验报告针对操作系统课程中的进程调度部分进行了详细的探讨和分析。通过理论学习与实践操作相结合的方式,我们深入理解了多种进程调度算法,并对其性能进行了评估。文档中还记录了实验过程中遇到的问题及解决方案,旨在提高读者对现代操作系统进程中资源分配的理解和掌握能力。 这段文字描述的内容包括详细的实验报告和代码,特别是进程调度的源代码以及标准的实验模板。
  • 调度
    优质
    本实验报告详细探讨了操作系统中进程调度机制的设计与实现,分析了几种常见算法,并通过编程实践验证其性能。 根据给出的时间片轮转调度算法示例,编程实现时间片轮转、非抢占式短进程优先这两种调度算法,并对同样几组进程分别使用这三种不同的调度算法(包括先来先服务),观察其平均周转时间和平均带权周转时间,生成比较表格。
  • 存储
    优质
    本实验报告详细记录了在操作系统课程中进行的存储管理实验过程,包括实验目的、操作步骤及结果分析,旨在加深对虚拟内存和页面置换算法的理解与应用。 三、实验内容(1)通过随机数生成一个包含320条指令的序列。这些指令地址根据以下原则分配: - 50%的指令为顺序执行; - 25%的指令在前段地址范围内均匀分布; - 另外25%的指令则分布在后端地址范围。 具体操作步骤如下: 1. 在[0,319]区间内随机选取一个起始点m。 2. 执行下一条顺序指令,即执行地址为m+1的指令。 3. 从[0, m+1]范围内随机选择并执行一条指令,设其地址为m’。 4. 继续按照顺序执行下一个地址上的指令,即m+1处的指令。 5. 在[m + 2到319]区间内随机选取一个位置,并在此位置上执行相应的指令。 6. 按照上述步骤重复操作直至总共完成了对320条指令的处理。