Advertisement

单脉冲激光在铝合金上的烧蚀仿真(COMSOL)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究利用COMSOL软件模拟分析了单脉冲激光与铝合金表面相互作用过程中的烧蚀现象,探讨不同参数对材料去除效率的影响。 铝合金单脉冲激光烧蚀的COMSOL模拟研究

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 仿COMSOL
    优质
    本研究利用COMSOL软件模拟分析了单脉冲激光与铝合金表面相互作用过程中的烧蚀现象,探讨不同参数对材料去除效率的影响。 铝合金单脉冲激光烧蚀的COMSOL模拟研究
  • COMSOL和连续属与树脂中仿模型
    优质
    本研究利用COMSOL软件模拟分析了脉冲及连续波激光对金属和树脂材料的烧蚀过程,探讨不同参数下的烧蚀效率与质量。 模拟激光烧蚀典型靶材的过程涉及不同的激光体制(包括脉冲、连续和重频)以及多种材料(如铝合金和树脂)。模型还包括了铝合金的吸收率曲线,并可以根据具体需求进行定制更改。
  • 连续模型
    优质
    本研究构建了铝合金材料在连续激光作用下的烧蚀过程数学模型,深入探讨了材料去除机制及热影响规律,为精密加工技术提供理论依据。 铝合金连续激光烧蚀是一种利用高能密度的连续激光束对铝合金材料进行加工的技术。通过精确控制激光参数(如功率、速度和焦点位置),可以在不接触的情况下实现高效且高质量的表面处理或结构成形,适用于航空航天、汽车制造等行业中的复杂零件生产与维修。
  • COMSOL仿模型.mph
    优质
    该文件为COMSOL Multiphysics软件中用于模拟激光烧蚀过程的仿真模型,通过此模型可以研究和分析不同参数下材料去除机制及表面形貌变化。 COMSOL激光烧蚀仿真的文件名为“comsol激光烧蚀仿真.mph”。
  • 二维COMSOL仿Cu.mph
    优质
    本仿真利用二维COMSOL软件研究了激光对铜材料(Cu)进行烧蚀的过程,分析了不同参数下铜表面温度变化及去除机制。 激光烧蚀Cu的有限元仿真分析
  • 与连续辐照下温度场仿
    优质
    本研究通过数值模拟方法探讨了铝合金材料在长脉冲和连续激光联合辐照作用下的温度分布特性,分析热影响区域及加热速率对材料性能的影响。 为了给长脉冲与连续激光联合作用模式的参数选择提供依据,采用ANSYS分析了2A12铝合金在长脉冲激光和连续激光共同辐照下的温度场变化。研究探讨了不同时间间隔(即两束激光加载起始时刻的时间差)以及不同光斑半径组合情况下,激光照射中心点最高温度及熔池尺寸的变化情况。 结果表明:随着两束激光之间时间间隔的增加,照射中心点的最高温度随之升高;然而,在特定的时间间隔之后,脉冲激光造成的温升会逐渐变得显著。此外,尽管峰值功率较高的长脉冲激光对最终的加热效果和熔池大小起决定性作用,但合适的连续激光预热(特别是当其功率密度达到105 W/cm²量级时)能够有效扩大熔池尺寸,并适度提高照射中心点温度。
  • Comsol双温模型属和半导体中应用——移动材料仿及固体传热分析
    优质
    本文探讨了COMSOL多物理场软件中激光双温模型的应用,着重于金属与半导体材料在脉冲激光加工过程中的移动烧蚀仿真以及相应的固体内热传导特性分析。通过精确模拟激光与物质交互作用的过程,该研究为优化制造工艺提供了理论依据和技术支持。 COMSOL激光双温模型应用于金属与半导体材料的脉冲激光移动烧蚀仿真。 1. 通过模拟脉冲激光对材料进行移动烧蚀。 2. 使用COMSOL软件中的固体传热物理场,实现多物理场耦合仿真。 3. 对皮秒激光烧蚀后的材料进行后处理分析,包括温度分布、温度随时间变化曲线以及整个加工过程的动画展示。
  • COMSOL模拟清洗
    优质
    本研究利用COMSOL多物理场仿真软件,对激光清洗技术在处理铝合金表面污染物的应用进行了详细建模与分析。通过优化激光参数,探索其去除效率及清洁效果,为实际工业应用提供理论指导。 脉冲激光热源在移动过程中发生变化。
  • 属薄膜材料超短热效应分析
    优质
    本研究聚焦于超短脉冲激光对金属薄膜材料烧蚀过程中的热效应,通过理论建模与实验分析,探讨不同参数条件下的烧蚀机理和热响应特性。 基于双曲双温两步热传导模型,并采用具有人工粘性和自适应步长的有限差分算法,对超短脉冲激光辐照金膜时的温度场进行了数值模拟计算。研究了不同能量密度及脉宽条件下金膜表面温度分布情况;分析了电子-晶格耦合系数对薄膜体内温度变化规律以及达到热平衡所需时间的影响。结果表明:激光脉冲的能量密度和宽度显著影响着电子温度峰值;而电子与晶格的耦合强度则决定了二者温升速率及相互作用的时间长度;在接近表面区域,电子温度及其梯度迅速增大至最大值,相应的高能电子崩力是导致金属薄膜早期力学损伤的主要原因。
  • 研究多飞秒过程中反射率变化对阈值影响
    优质
    本研究探讨了在多脉冲飞秒激光加工中,材料表面反射率的变化如何影响激光烧蚀阈值,深入分析其内在机理。 为了提高飞秒激光微加工的精度,本研究探讨了多脉冲飞秒激光烧蚀积累效应形成的机理。以铜靶为例,采用时域有限差分法(FDTD)求解双温方程,并分析了电子、离子亚系统温度及激光烧蚀阈值随反射率变化的规律。结果显示,在多脉冲激光烧蚀过程中,前一个脉冲会破坏靶材表面结构,导致后续脉冲的反射率下降和烧蚀阈值显著降低。这解释了在多脉冲飞秒激光加工中观察到的烧蚀阈值不断变化的现象。同时表明,在进行多脉冲飞秒激光微加工时,必须考虑反射率的变化对激光烧蚀的影响以实现高精度加工。