Advertisement

MATLAB开发-椭圆拟合(fitellipse)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本教程介绍如何使用MATLAB进行椭圆拟合,通过fitellipse函数实现数据点的最佳椭圆拟合,适用于图像处理和数据分析中的形状识别。 在MATLAB开发环境中使用fitellipse函数,根据一组给定的点(闭合轮廓)来找到最适合这些点的椭圆。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLAB-fitellipse
    优质
    本教程介绍如何使用MATLAB进行椭圆拟合,通过fitellipse函数实现数据点的最佳椭圆拟合,适用于图像处理和数据分析中的形状识别。 在MATLAB开发环境中使用fitellipse函数,根据一组给定的点(闭合轮廓)来找到最适合这些点的椭圆。
  • (Matlab)
    优质
    简介:本资源提供了一套详细的Matlab代码和教程,用于在图像处理中进行椭圆检测与拟合,适用于科研及工程应用。 这是一个快速且非迭代的椭圆拟合算法。用法:A = EllipseDirectFit(XY)。 输入: - XY(n,2)数组代表n个点的坐标。 - x(i)=XY(i,1) - y(i)=XY(i,2) 输出: - A=[a b c d e f],表示椭圆拟合系数向量。其方程为:ax^2 + bxy + cy^2 + dx + ey + f = 0。 其中A被归一化为||A||=1。 可以转换输出的几何参数(如半轴、中心等)的具体理论公式可以在相关文献或资源中找到。此椭圆拟合理论由以下文章提出: - A. W. Fitzgibbon, M. Pilu, R. B. Fisher Direct Least Squares Fitting of Ellipses IEEE Trans. PAMI, Vol. 21, pages 476-480 (1999) 作者称该方法为“直接椭圆拟合”。 此代码基于一个合适的数值稳定版本R.Halir和J.Flusser,仅将数据进行了中心化处理以进一步提高性能。 注意:拟合输出值为椭圆!即使点可以得到更好的近似双曲线的逼近效果,您依然会获得一个椭圆。
  • :根据给定点 (x, y) 返回最优 - MATLAB
    优质
    本MATLAB项目提供了一种算法,用于接收一系列二维点坐标(x,y),并计算这些点的最佳椭圆拟合。该工具可应用于图像处理和数据分析等领域,帮助用户识别数据中的椭圆形结构或模式。 用法:[semimajor_axis, semiminor_axis, x0, y0, phi] = ellipse_fit(x, y) 输入: - x - x 测量值的向量 - y - y 测量值的向量 输出: - semimajor_axis - 椭圆长轴的大小 - semiminor_axis - 椭圆短轴的大小 - x0 - 椭圆中心的 x 坐标 - y0 - 椭圆中心坐标 - phi - 相对于弧度的旋转角度 x 轴使用的算法:给定椭圆的二次形式: \[ a*x^2 + 2*b*x*y + c*y^2 + 2*d*x + 2*f*y + g = 0 \] 我们需要找到最佳(在最小二乘意义上)参数 \(a, b, c, d, f, g\)。为了将问题转化为常见的估计形式,等式两边除以\(a\), 然后把\(x^2\)移到另一边: \[ 2*b*x*y + c*y^2 + 2*d*x + 2*f*y + \frac{g}{a} = - x^2 \] 这样可以方便地进行参数估计和椭圆拟合。
  • Hyperellipsoid Fit: 直接球及超球 - MATLAB
    优质
    本项目提供了一种直接拟合二维椭圆、三维椭球及其他维度超椭球的方法。利用MATLAB实现,适用于数据点集的最佳拟合需求。 函数 HYPERELLIPSOIDFIT.M 用于将二次曲面拟合到给定的 n 维数据集上,特别适用于椭球拟合任务。此函数整合了几种不同维度下的椭圆拟合方法,并提供了一种确保在任何情况下都能生成有效解的方法。此外,它还包含一种正则化技术,能够强制解决方案成为球体并解决不适定拟合问题。 该方法的具体描述可以在 Kesäniemi-Virtanen 的论文“超椭圆体的直接最小二乘拟合”中找到,发表于 IEEE 模式分析和机器智能交易期刊。另外,在包内还包含了一个名为 DEMO.M 的函数,它使用 HYPERELLIPSOIDFIT 函数来演示在不同正则化参数值下各种方法产生的 3D 结果。
  • MATLAB代码
    优质
    这段MATLAB代码用于实现图像中椭圆形状的自动检测与拟合,适用于目标识别、模式识别等领域。 ellipsefit 是一个用于椭圆拟合的程序。示例为 ellipse1。无论输入多少个点的坐标,此程序都能计算出拟合的椭圆方程。
  • MATLAB中的2D与3D
    优质
    本文章介绍了在MATLAB中进行二维椭圆和三维椭球拟合的方法和技术,包括相关算法、代码实现及应用示例。 采用最小二乘法可以辨识系统模型为椭圆或椭球参数的模型,从而校正加速度传感器和地磁传感器等设备。
  • MATLAB中的程序
    优质
    本简介介绍一个用于在MATLAB环境中进行椭圆拟合的程序。该工具旨在帮助用户通过给定的数据点集来精确地估计椭圆参数,适用于图像处理、计算机视觉等领域。 这段文字描述了一个用MATLAB编写的程序,该程序通过最小二乘法进行椭圆拟合,并最终得到椭圆的五个参数。
  • Matlab中的函数
    优质
    本简介介绍在MATLAB环境下实现椭圆拟合的各种方法和内置函数,帮助用户掌握如何通过编程语言进行曲线拟合操作。 function [varargout]=ellipsefit(x,y) ELLIPSEFIT 提供了一种稳定的直接最小二乘椭圆拟合方法。 [ Xc, Yc, A, B, Phi, P ] = ELLIPSEFIT( X, Y ) 找到能够最好地拟合给定数据点集的最小二乘椭圆。X 和 Y 至少需要包含五个数据点。Xc 和 Yc 分别是椭圆在 x 轴和 y 轴上的中心坐标,A 和 B 则代表椭圆的主要轴长和次要轴长;Phi 表示主要轴与 x 轴之间的夹角(以弧度为单位)。P 是一个向量,包含描述该椭圆形的一般二次曲线参数。
  • MATLAB中的程序
    优质
    本程序提供了一种在MATLAB环境下实现复杂数据集的椭圆拟合的方法。通过优化算法,能够准确地从散点集中提取出最佳椭圆模型,适用于图像处理、数据分析等多个领域。 通过离散点拟合椭圆并获取其参数,在MATLAB中直接绘图使用方便,已经过测试验证。
  • _two-method_fitellipse.zip
    优质
    本资源包含两种不同的椭圆拟合方法,以MATLAB代码形式实现。通过比较分析,帮助用户选择最适合其需求的数据拟合方案。 我收集了一位外国编写的椭圆拟合算法的C++实现版本。该算法可以根据输入的一组XY数据计算出椭圆参数。