Advertisement

数字化小型测频接收机

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
数字化小型测频接收机是一款集成了数字信号处理技术的小型化无线电信号监测设备,适用于多种频率范围内的信号测量与分析。 本段落介绍了AD公司生产的RFIF相位和幅度测量芯片AD8302,并以该芯片为核心,结合功分器、延迟线及FPGA芯片设计了一种瞬时测频接收机,优化了传统设计方案。依据此设计制作出一套测频系统并对系统的整体性能进行了测试。测试结果显示,在1.4至2.0 GHz的频率范围内,本系统能够准确测量信号,并且测频精度达到10 MHz。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    数字化小型测频接收机是一款集成了数字信号处理技术的小型化无线电信号监测设备,适用于多种频率范围内的信号测量与分析。 本段落介绍了AD公司生产的RFIF相位和幅度测量芯片AD8302,并以该芯片为核心,结合功分器、延迟线及FPGA芯片设计了一种瞬时测频接收机,优化了传统设计方案。依据此设计制作出一套测频系统并对系统的整体性能进行了测试。测试结果显示,在1.4至2.0 GHz的频率范围内,本系统能够准确测量信号,并且测频精度达到10 MHz。
  • 的理论与技术
    优质
    《数字化接收机的理论与技术》一书深入探讨了现代通信系统中数字化接收机的设计原理和技术实现,涵盖信号处理、算法优化及硬件设计等多个方面。 《全数字接收机理论与技术》全面阐述了全数字接收机的基本原理和技术实施方法,为开发包括HDTA、CDMA、TDMA以及第三代移动通信系统在内的各种类型全数字解调器提供了坚实的基础,并对软件无线电系统的应用也具有重要意义。在这样的设备中,信号从载波转换成数字形式是在接收端的前端完成的——无论是中频还是高频阶段或者靠近天线的位置,通过使用模数转换器(A/D变换)。之后的所有处理过程如下变频、滤波和解调等都采用数字化技术来实现。全数字接收机是通信技术、计算机技术和大规模集成电路发展的结晶体,它彻底改变了传统接收机的结构与功能,并引领了新的发展方向。
  • 宽带的信道设计
    优质
    本研究聚焦于数字宽带接收机的设计与优化,特别关注其信道化技术的应用与发展,旨在提升信号处理效率和质量。 在现代电子战环境中,信号通常表现出密集化、复杂化的特征,并且占用的频谱越来越宽泛,这使得宽带数字信道化接收机准确接收到这些信号的要求越来越高。传统的多相滤波器在监测整个频段时,由于相邻通道之间可能存在盲区,可能会导致某些信号被遗漏。改进后的无盲区多相滤波器其通道数量与抽取倍数不再相同。传统的方法如旋转开关技术仅适用于信道数目和抽取倍率相等的情况,并不能适应这种新算法的需求。然而,在许多情况下,信道的数量和抽取因子之间存在一定的比例关系,本段落正是利用了这一特性解决了延迟及抽取的问题,并完成了复多相滤波器的FPGA设计。
  • 低功率调幅
    优质
    这款小型低功率调幅接收机专为便携式和低成本应用设计,适用于广播电台信号接收及教学实验用途。 小功率调幅接收机设计与高频电子线路课程相结合,并利用Multisim进行电路仿真。
  • 无线网络宽带的射前端研究
    优质
    本研究聚焦于无线网络宽带环境下数字中频接收机的射频前端技术,探索其设计与优化方法,以提升通信系统的性能和效率。 射频前端模块的性能直接影响整个接收机的表现。由于宽带数字中频接收机具备卓越的整体性能而备受关注。本段落探讨了几种不同的接收机前端拓扑结构及其各自的优缺点,并重点介绍了宽带数字中频接收机射频前端的设计方案和工作原理,详细说明了该设计方案的具体实现过程,并提供了部分仿真及测试的结果。
  • 率调节
    优质
    频率调节接收机是一种能够接收并调谐特定频段信号的电子设备,广泛应用于无线电通信、广播电视和卫星导航等领域。它能有效选择所需的无线电信号,并将其转换为可供用户接收的音频或视频信息。 调频接收机用于接收广播节目,这类收音机使用鉴频器对调频的高频信号进行解调。虽然调频信号原本是恒定幅度的,在传输过程中可能会因为各种干扰导致其幅度发生变化。为了消除这些干扰的影响,通常在鉴频之前会用限幅器将信号限制为等幅状态。 根据超外差式调频收音机的工作原理,整机电路可以分为以下几个部分:输入调谐回路、高频放大电路、混频电路、本振(本地振动)电路、中频放大电路、鉴频器电路以及低频功放电路。
  • 基于FPGA的软件无线电系统
    优质
    本项目设计了一种基于FPGA技术的数字中频接收机软件无线电系统,实现灵活高效的信号处理和解调功能。 本段落详细介绍了基于FPGA的软件无线电数字中频接收机。
  • 相位量仪
    优质
    数字化低频相位测量仪是一种精密电子仪器,用于准确测量低频信号之间的相位差。它广泛应用于电力系统、通信工程及科研领域,支持数据采集与分析,为科学研究和工业应用提供可靠的技术保障。 本系统以单片机和FPGA为核心,并结合必要的模拟电路设计而成,旨在构建一个基于高速处理能力的FPGA低频数字式相位测量仪。该仪器由三个主要部分组成:相位测量仪、数字移相信号发生器以及移相网络。 首先,移相网络是系统的基础模块之一,能够生成在-45°至+45°范围内的两路信号,并通过高、低通电路的临界截止点设计来实现所需的相位偏移。当这些滤波器的截止频率与输入信号频率一致时,根据幅频特性产生相应的相位差变化;随后利用放大和调制装置确保输出信号幅度稳定且可调节。 其次,数字式移相信号发生器是系统的关键组件之一,它能够生成从0°到359°之间、步长为1°的两路输出信号。设计中采用了F-T转换相位定位方案,并利用直接数字频率合成(DDFS)技术来产生输入波形;通过单片机计算延时时间以精确控制相位差,从而避免了在高频条件下可能出现的精度损失问题。 最后,在面对相位模糊这一挑战时,系统设计者提出了三种解决方案。第一种方法是采用混频分像监相电路,并利用双极性锯齿波和正弦余弦信号来获取准确的相位信息;通过A/D转换及微处理机进行进一步的数据处理以消除温度漂移影响并提高测量精度。第二种方案则侧重于使用检相器,将电压信号转化为数字形式以便后续分析。然而,在实际应用中发现这种方法对芯片精度要求较高且难以实现数字化处理的无缝对接。 最终选定的是基于高速FPGA技术的第三种方法:通过单片机控制数据采集和处理过程来减少相位模糊现象的发生频率,并实现了高分辨率下的精确测量效果。 经过实验验证,上述功能均得以准确实现。该低频数字式相位测量仪能够满足0°至359°范围内的相位差测量需求,在科研与工业应用领域中具有重要的实用价值和精度表现。特别是在需要精准测定信号间相位差异的场景下,此仪器将发挥关键作用。
  • 相位量仪
    优质
    数字化低频相位测量仪是一种用于精确测量交流信号在低频范围内的相位差和频率的专业仪器,广泛应用于电子工程、通信系统及科研领域。 本低频数字式相位测量仪基于多周期同步计数法和DDS原理设计,并采用89C55单片机作为控制核心,FPGA为处理核心,由移相信号发生器、移相网络及相位测量仪三部分组成。整个系统具有高性价比的特点。 其中,移相信号发生器使用14位高精度数模转换器DAC904,其输出信号幅度范围从10mV到9VP-P,在频率为0.1Hz至3MHz时无明显失真现象,并且可以提供精确的相位差控制在0°~359.95°。相位测量采用MAX913比较器芯片进行,其测量范围覆盖了从1Hz到500kHz,远超常规要求,确保低频信号中的高精度检测。移相网络具备连续调整能力,在-45°至+45°范围内满足设计需求。 系统具有良好的模块化和集成度,并提供友好的人机交互界面以及外部功能扩展的便利性。选择DDS技术作为移相信号发生器的核心,因其能够实现更宽广的频率范围、更高的精度及更好的可控性。相位测量则采用多周期同步计数法,尽管这种方法需要较长的测量时间,但可以显著减少量化误差并提高测量准确性。 系统设计涵盖了阻抗变换模块、移相网络、相位测量仪和最小系统的多个部分,并通过键盘输入信号发生器所需的参数(如频率、相位及幅度),由信号发生器生成相应的输出。在实现过程中需要解决的问题包括如何扩展信号电压范围,提升相位精度以及选择合适的移相网络与测量方案等。 综上所述,该低频数字式相位测量仪是分析和测试低频信号的重要工具,在科研及工程应用中具有广泛的应用价值。
  • 电子线路——调
    优质
    本课程聚焦于高频电子线路中的调频接收机制作与分析,深入探讨了相关电路设计、调试技巧及应用实践。 ### 高频电子线路——调频接收机 #### 实验目的 本次实验旨在掌握基本的调频接收机电路组合与调试方法,并深入了解集成电路单片接收机性能及其应用场景。 #### 调频接收机的主要技术指标 1. **工作频率范围** 接收机能够接收到的无线电波的频率范围被称为其工作频率范围或波段覆盖。这一范围必须与发射端的工作频率相匹配,以确保信号的有效传输。例如,调频广播收音机的工作频率为88~108MHz。 2. **灵敏度** 灵敏度指的是接收微弱信号的能力,通常用输入信号电压的大小来表示。灵敏度越高,能够接收到的信号就越微弱。对于调频广播收音机而言,其灵敏度一般在5~30uV之间。 3. **选择性** 选择性是指从多种信号和干扰中选取所需信号的能力,通常以分贝(dB)为单位表示。dB数值越大,表明接收机的选择性越好。调频广播收音机的中频干扰要求大于50dB。 4. **频率特性** 频率特性指接收机的频率响应范围或通频带。对于调频接收机而言,其通频带通常为200KHz。 5. **输出功率** 输出功率是指在其负载上输出的最大不失真功率。这一指标对确保音频质量至关重要。 #### 调频接收机组成与工作原理 调频接收机的基本组成部分包括输入回路、高频放大器、混频器、中频放大器、本振电路以及低频功放,其主要工作流程如下: 1. **输入回路** 输入回路负责从天线接收到的信号中选择所需的频率。这些信号随后会被送入后续处理阶段。 2. **高频放大器** 高频放大器用于增强信号强度以便于后续处理。 3. **混频器** 混频器的作用是将接收信号转换为固定的中间频率(IF)信号,通常涉及本振电路产生的参考频率与接收到的信号混合。 4. **中频放大器** 经过混频后的中频信号被进一步放大以增加其强度并提高整体性能。 5. **本机振荡器** 该部分提供一个稳定的参考频率用于生成中间频率(IF)信号,从而实现接收和处理特定的广播波段。 6. **低频功放** 对解调出的音频信号进行放大以便于驱动扬声器或其他输出设备。 #### 单元电路设计 1. **高频功率放大电路** 该电路采用晶体管作为核心元件,通过LC并联谐振回路实现选频功能。这种结构不仅能够放大信号还具备一定的选择性能力。 2. **混频电路** 混频器利用二极管环形混频器设计而成的平衡网络可以在接收信号和本地振荡信号之间进行混合,生成中频(IF)信号。该方法具有简单且稳定的优点。 3. **中频放大电路** 中频放大电路的任务是对变频后的中间频率(IF)信号进一步放大以准备后续解调处理。这一过程对提高灵敏度、选择性和通带等关键性能指标至关重要。 通过上述介绍可以看出,设计高性能的调频接收机需要理解并掌握多个关键技术指标和复杂的电路结构。