Advertisement

识别人类活动。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该项目旨在通过构建一个模型来识别人类活动,该模型能够预测诸如行走、步行上楼、步行下楼、坐着、站立或躺下的各种活动类型。 收集了来自30名参与者(在数据集中被称为“主题”)的数据,这些参与者在腰间佩戴智能手机,并执行一系列不同的活动。 这些活动中的数据通过智能手机内置的传感器——加速度计和陀螺仪——进行记录。 为了确保数据的准确性,录制了整个实验过程的视频,并对其进行手动标记。 数据记录的方式是通过利用智能手机中的加速度计和陀螺仪,从而捕捉到“3轴线性加速度”(tAcc-XYZ)以及“3轴角速度”(tGyro-XYZ)等信息。值得注意的是,“t”作为前缀表示时间,而“XYZ”则代表了在X、Y和Z三个方向上的三轴信号。 简要概览数据集:包括加速度计和陀螺仪的读数。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    人体活动识别是一门研究如何通过传感器数据来自动检测和分类人类日常活动中动作的技术。它广泛应用于健康监测、智能家居及虚拟现实等领域,旨在提高人们的生活质量与便利性。 人类活动识别项目旨在建立一个模型来预测人的日常行为动作,包括行走、上楼、下楼、坐立和躺卧。该项目的数据来源于30位参与者(在数据集中被称为主题),他们佩戴智能手机于腰部进行不同类型的活动。这些传感器记录了加速度计与陀螺仪的信号变化。 具体来说,通过使用手机中的加速度计和陀螺仪来收集“三轴线性加速”(tAcc-XYZ) 和 “三轴角速率” (tGyro-XYZ),其中前缀 t 表示时间维度,后缀 XYZ 则代表在 X、Y 及 Z 三个方向上的信号。 此外,实验过程还通过视频进行录制,并由人工对数据进行了标记。
  • ActRecTut: 用于的MATLAB工具箱
    优质
    ActRecTut是一款专为教育目的设计的MATLAB工具箱,旨在简化人类日常活动识别的研究与教学过程。它提供了一系列易于使用的函数和示例数据集,帮助用户快速掌握相关算法和技术。 使用穿戴式惯性传感器进行人类活动识别的教程由Andreas Bulling、Ulf Blanke和Bernt Schiele撰写,并发表在ACM Computing Surveys 46卷第3期(2014年1月),共33页。该论文详细介绍了基于MATLAB工具箱的人体惯性传感器用于人类活动识别的方法和技术。 文章标题为“A Tutorial on Human Activity Recognition Using Body-worn Inertial Sensors”,其DOI信息如下: @article{bulling14_csur, title = {A Tutorial on Human Activity Recognition Using Body-worn Inertial Sensors}, author = {Andreas Bulling and Ulf Blanke and Bernt Schiele} }
  • 基于智能手机的数据集
    优质
    本数据集通过智能手机传感器收集人类日常活动信息,涵盖多种场景与行为模式,旨在促进智能生活研究与发展。 类活动识别数据库是基于30名受试者的记录建立的,在进行日常生活活动(ADL)期间,他们携带了一个嵌入式惯性传感器的腰装智能手机。数据集中的每条记录提供以下信息:加速度计三轴加速度(总加速度)和估计的身体加速度;陀螺仪三轴角速度;包含时域和频域变量的561特征向量;活动标签以及参与实验主体的身份标识符。该实验在30名年龄介于19至48岁的志愿者中进行,每个人都在腰间佩戴了三星Galaxy S II智能手机,并进行了六项不同活动(行走、上楼、下楼、坐立、站立和躺卧)。
  • (HAR)中的深度神经网络应用
    优质
    本文探讨了深度神经网络在人类活动识别(HAR)领域的应用,分析其优势和挑战,并展望未来的发展趋势。 哈尔使用深度神经网络进行人类活动识别(HAR)。
  • 与分基于三轴加速度计技术
    优质
    本研究聚焦于利用三轴加速度计数据对人类日常活动中进行精准识别和分类的技术探索。通过分析人体运动产生的加速信号,提取关键特征,并应用机器学习算法实现高效的人体行为模式辨识,旨在为智能健康监测、人机交互等领域提供技术支持与解决方案。 研究领域集中在使用三轴加速度计与机器学习算法相结合对人类活动的识别与分类。以下是关于此领域的详细知识点: 一、三轴加速度计原理及应用 三轴加速度计是一种测量沿三个相互垂直方向(通常是X、Y、Z轴)的加速度的传感器,在人体动作识别中,它可以被安装在不同部位来捕捉因动作产生的变化,并通过处理输出信号分析步速、步幅等特征。 二、支持向量机(SVM) 支持向量机是一种监督式学习算法用于分类和回归。它尝试找到一个超平面以最大化类别之间的边界,在高维数据中表现良好,尤其擅长于非线性可分情况的处理。通过核函数将原始数据映射到更高维度空间,实现原本不可分的数据变得可分。 三、小波变换 这是一种信号分解方法,广泛应用于信号分析和非平稳信号处理。在人体动作识别研究中用于提取加速度计采集的动作信号时频特征以利于分类与识别。 四、主成分分析(PCA)及降维 主成分分析是一种统计降维技术能够将多个变量转换为少数几个主要的组成部分,保留大部分数据变异信息。使用三轴加速度计进行动作识别可通过此方法降低维度并简化处理同时保持关键特征不变。 五、交叉验证 一种评估模型泛化能力的方法,在K层交叉验证中,整个数据集被分成K个相似大小且互斥的部分,每次选取其中一部分作为测试集其余部分用于训练。重复该过程多次后取平均值评价模型性能。此方法常用来优化支持向量机的参数。 六、径向基核函数(RBF) 一种常用的核函数特别适合处理非线性问题,在SVM中可以将输入空间映射至无限维度特征空间,适用于原始特征空间内不可分的数据集。通过调整其参数如宽度σ进一步提升模型识别效果。 七、动作识别与分类 利用传感器和算法对人类特定活动进行辨识和归类的过程。研究过程中经过小波变换及PCA降维处理后的加速度计数据被SVM用于区分不同类别,成功实现了六种动作的高精度分类(平均准确率94.5%),展示了该技术在智能穿戴、康复医学等人机交互领域的应用潜力。 以上知识涵盖了三轴加速度计的应用原理、支持向量机算法及其优化参数、数据预处理方法以及如何通过机器学习实现对动作进行有效识别和分类。
  • smartphone-dataset: 基于智能手机数据集的
    优质
    Smartphone-Dataset项目利用来自智能手机的数据集来分析和识别人类日常活动中包含的各种模式。该资源提供了丰富的传感器记录,如加速度计、陀螺仪等信息,支持研究人员在人机交互领域开展深入研究。 为了使用智能手机数据集进行人类活动识别,请确保输入数据已放置在您的工作目录中。下载并解压缩文件后,“UCI HAR Dataset”目录应出现在工作目录内。此脚本依赖于plyr库,并假设该库已经安装完成。此外,脚本已在R版本3.2.1上进行了测试。
  • LSTM-CNN模型在HAR中的应用:用于
    优质
    本研究提出了一种结合LSTM和CNN优势的混合模型,专门应用于人体活动识别(HAR),显著提升了识别精度与效率。 用于人类活动识别的LSTM-CNN模型的第一个可穿戴数据集包含了30位受试者的记录,在进行日常生活(ADL)活动中佩戴腰部安装式智能手机的同时被采集下来。每位参与者都在腰间携带了一部三星Galaxy S II手机,并进行了六项特定任务,从设备中的嵌入式加速度计和陀螺仪以50Hz的固定频率捕获了3轴线性加速度及3轴角速度的数据。 标签是通过视频记录下来的,传感器信号经过噪声滤波器预处理后,在2.56秒的时间窗口(128个读数/窗口)以及50%重叠的情况下进行采样。从每个时间窗中计算了时域和频域的变量,从而生成了一个包含561个特征向量的数据集。 另一个可穿戴数据集则记录了十名志愿者在执行十二项常见活动期间的身体运动及生命体征信息。放置于胸部、右手腕以及左脚踝上的传感器分别测量身体不同部位所经历的加速度、角速率和磁场方向,而置于胸部位置的传感器还提供了心电图(ECG)的数据记录功能。
  • :基于UCI HAR数据集的机器学习应用
    优质
    本研究利用UCI HAR数据集进行机器学习分析,旨在提升对人类日常活动中动作行为的精准识别能力,为智能生活提供技术支持。 在UCI HAR数据集上使用机器学习进行人类活动识别。
  • :基于智能手机传感器的Human-Activity-Recognition系统
    优质
    本研究开发了一套利用智能手机内置传感器数据的人体活动识别系统(Human Activity Recognition, HAR),旨在通过分析用户日常行为模式,实现对走路、跑步、骑车等不同活动类型的自动识别与分类。该系统具备高准确率及低能耗的特点,为智能健康监测和人机交互领域提供了新的解决方案。 人体活动识别通过智能手机上的传感器来识别人类的活动。所需的技术包括加速度计、Matlab以及基本机器学习知识,并且需要Android环境的支持。 在处理数据的过程中,原始数据数组长度为N,每个框架包含250个样本,相邻帧之间有重叠的50个样本。总的帧数量是frameNum,维度数是dimNum(8)。 主要变量包括: - rawData:合并了一个活动的所有文件中的所有数据,大小为(N * 3)。 - frame:将rawData重塑成(frameNum * frameSize * 3)的形式。 - 框架标签和frameData:原始的三轴数据扩展后的维度和大小是(frameNum * frameLen * dimNum)。 特征提取过程是从frameData中抽取,同时也会从训练数据集中进行特征提取。总的来说,只需要按照“数据处理”部分的操作步骤运行或遵循,并根据需要调整文件格式后将文件放入指定文件夹内即可。