Advertisement

单闭环直流调速系统的运动控制仿真

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究专注于单闭环直流调速系统,通过计算机仿真技术探讨其在不同工况下的动态响应与稳定性,为电机控制系统的设计优化提供理论依据。 运动控制系统单闭环直流调速系统的Simulink仿真包括相关模块以及实验波形。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 仿
    优质
    本研究专注于单闭环直流调速系统,通过计算机仿真技术探讨其在不同工况下的动态响应与稳定性,为电机控制系统的设计优化提供理论依据。 运动控制系统单闭环直流调速系统的Simulink仿真包括相关模块以及实验波形。
  • 仿分析-双仿.doc
    优质
    本文档探讨了双闭环直流调速系统的仿真实验与性能分析,通过MATLAB/Simulink等软件工具进行建模和仿真,详细研究了系统的动态响应特性及控制策略优化。 双闭环直流调速系统仿真 本段落详细介绍了双闭环直流调速系统的仿真过程,并提供了具体的参数设置方法。通过该文的指导,读者可以深入了解如何进行此类仿真的操作步骤以及相关技术细节。文档内容详尽且实用性强,适合需要学习或研究这一领域的人员参考使用。
  • 设计
    优质
    本项目聚焦于双闭环直流调速系统的设计与优化,通过精确控制电机速度和位置,实现高效稳定的运动控制,适用于自动化设备及工业机器人领域。 设计目的:通过设计直流双闭环调速系统来掌握其工作原理及调节器的设计方法。 设计要求包括: 1. 设计转速调节器(ASR)以及电流调节器(ACR)。 2. 完成转速反馈和电流反馈电路的设计。 3. 调节器电路的详细设计。 4. 分析电动机在带40%额定负载启动至最低转速时的超调量。 5. 计算空载启动到额定速度所需的时间。 6. 对所设计的调速系统进行仿真和性能分析。 7. 实现转速调节器的数字化,使用已掌握的语言编写实时控制程序。 在本次设计中,首先进行了方案论证,阐述了该调速系统的作用及当前的发展状况,并对不同的调速系统与调节器做了对比选择;随后利用Proteus软件进行仿真验证其可行性。接着完成了ASR和ACR的设计及相关反馈电路、调节器电路的分析工作,并完成了一系列必要的计算任务;最后通过Simulink工具进行了系统的模拟实验,同时实现了转速控制器的数字化设计。
  • 仿试验
    优质
    本研究聚焦于单闭环直流调速系统,通过计算机仿真技术进行深入分析与实验验证,探讨该系统在不同工况下的性能表现及优化方案。 单闭环直流调速系统仿真实验
  • 仿模型
    优质
    本研究构建了转速与电流双重闭环反馈机制的调速系统仿真模型,旨在通过精确控制电机运行参数以优化性能和响应速度。 在一个由PWM变换器供电的转速与电流双闭环调速系统中,已知电动机的具体参数如下:额定功率PN为60kW,额定电压UN为220V,额定电流IN是308A,以及额定转速nN为1000r/min。主电路的总电阻R等于0.1Ω, 电动势系数Ce设定在0.196 V·min/r 。PWM变换器的工作频率设为8kHz,并且其放大倍数Ks是35,电磁时间常数Tl设置为0.01秒,机电时间常数Tm则是0.12秒。电流反馈滤波的时间常数Toi设定在0.0025秒,转速反馈的滤波时间常数Ton设为0.015秒;过载倍数λ定为1.5,额定转速时给定电压(Un*)N是10V。调节器ASR和ACR饱和输出电压分别为Uim*等于8V以及Ucm同样为8V。系统仿真时间为10秒。 该系统的静动态性能指标如下:在稳态条件下无静态误差;调速范围D设定为10,电流超调量σi不超过5%;从空载启动至额定转速时的转速超调量σn应控制在不大于10%。此外,需要提供电流调节器和转速调节器的具体传递函数。
  • 基于Simulink仿
    优质
    本研究利用Simulink工具对直流电机的转速闭环控制系统进行建模与仿真分析,探讨了不同参数下的系统性能。 转速闭环控制直流调速系统的Simulink仿真采用PI调节模块有效降低了超调和静差。系统各参数已经调整好,可以直接运行。仿真结果包括转速、电流和励磁电流等数据。
  • 基于转反馈仿
    优质
    本研究设计并仿真了一种基于转速反馈的单闭环直流调速控制系统,通过调节电机转速实现精准控制,适用于工业自动化领域。 使用Simulink实现直流电机模型的开环仿真,并通过添加控制器(包括比例环节和比例积分环节)来完成其闭环仿真的过程。
  • 仿分析
    优质
    本研究探讨了双闭环直流调速系统在不同工况下的动态响应特性,通过仿真技术详细分析其稳定性和调节性能,并提出优化策略。 在双闭环系统中设置了两个调节器:转速调节器(ASR)和电流调节器(ACR),分别用于调控电机的转速和电流。这两个控制器通过串级连接的方式协同工作,并且它们都配备了输出限幅电路,其限制值分别为Usim 和Ucm。由于调速系统的主要控制目标是确保电动机速度准确跟随给定电压,因此将由转速负反馈构成的环路设定为外环;与此同时,内环则通过电流负反馈来实现最大电流约束下的“最优”过渡过程控制策略。这样的设计可以在保证电机稳定运行的同时提高动态响应性能。
  • 仿分析
    优质
    本研究对双闭环直流调速系统进行了深入的动态仿真分析,探讨了其在不同工况下的性能表现和调节特性。 ### 双闭环直流调速系统及其动态仿真 #### 一、引言 双闭环直流调速系统因其良好的动静态特性和抗扰性能,在工业领域有着广泛的应用,尤其是在龙门刨床、可逆轧钢机、造纸、印染设备以及其他需要精密控制转速的直流调速系统中。本段落将详细介绍双闭环直流调速系统的组成、工作原理、抗干扰能力,并通过动态仿真实验来验证其性能。 #### 二、双闭环系统的组成与工作原理 ##### 2.1 组成 双闭环系统主要包括两个核心组件:转速调节器(ASR)和电流调节器(ACR)。这两个调节器通过串级连接实现对转速和电流的精确控制。其中,转速负反馈环作为外环,确保电动机转速能够准确跟踪给定电压;电流负反馈环作为内环,在最大电流限制下提供最优控制。 ##### 2.2 工作原理 - **转速调节器(ASR)**:输入偏差电压为ΔuSR = uSN - uFN,即给定转速与实际转速之间的差值。ASR的输出电压uSI作为ACR的给定信号。 - **电流调节器(ACR)**:输入偏差电压为ΔuCR = -uSI + uFI,即电流给定信号与反馈电流之间的差值。ACR的输出电压UC作为触发电路的控制电压。 - **动态响应**:在启动过程中,由于转速低,实际转速接近于零,导致ΔuSR较大,使得ASR处于输出限幅状态。此时,uSI加到ACR输入端使整流输出电压Ud0增加,电流Id迅速上升至最大值Idm。随着转速逐渐增加,ASR退出限幅状态,转速负反馈开始起作用;同时uSI减小,导致电流Id下降。 #### 三、双闭环系统的抗干扰分析 ##### 3.1 电网电压扰动 电网电压扰动位于电流环内。当电压变化时,通过电流负反馈环节可以快速调节并抑制其影响。 ##### 3.2 负载扰动 负载扰动发生在电流环之外、转速环之内。主要依靠转速负反馈进行调节:在正常工作状态下,增加的负载会导致转速下降;调整后可恢复至无差状态。严重过载时(即电流超过Idm),则由电流调节器起主导作用以保护电机免受损害。 #### 四、双闭环直流调速系统的动态仿真及其分析 ##### 4.1 实验条件 本节基于EL-MC-Ⅱ型电气控制综合实验台进行了双闭环直流调速系统动态仿真实验。使用355W,110V, 4.1A, 1500r/min的直流电动机和三相全控桥式整流装置。 ##### 4.2 数据采集与分析 利用计算机实验软件及数据采集系统对双闭环直流调速系统的转速n(t)和电流i(t)进行了采样。通过调整ASR和ACR参数(KP, Ki, Kd),得到波形图。仿真结果显示,在启动初期,由于低转速导致速度调节器ASR处于限幅状态;而随着电机转速上升,ASR退出限幅状态,并且电流逐渐下降至稳定值。 #### 五、结论 双闭环直流调速系统通过引入转速和电流两个闭环控制,实现了高精度的转速控制及较强的抗干扰能力。动态仿真结果显示,在启动与负载变化时均能保持良好的动态性能;合理设置调节器参数后,可在不同工况下获得满意效果,进一步证明了该系统的实用价值。