Advertisement

一个7.4V至5V,2A的芯片,以及一个8.4V至5V,2A的电路图。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该电路图展示了7.4V至5V、8.4V至5V、6V以及7.4V和8.4V的降压转换,其中PW2162是一款高性能的DC-DC同步降压转换器芯片。这款芯片具备广泛的输入电压适应性,能够处理4.5V至16V之间的电压范围,并且支持高达2A的最大负载电流,同时还提供可调的输出电压。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 7.4V5V降压,8.4V5V3A降压规格书.pdf
    优质
    本文件详细介绍了适用于从7.4V到5V降压转换及8.4V转5V、输出电流高达3A的高效降压芯片的各项技术参数与应用指南。 PW2163 是一种高效的 500kHz 同步降压 DC-DC 转换器,能够输送高达 3A 的电流,并在 4.5V 至 18V 的宽输入电压范围内工作。它集成了主开关和同步开关,并具有非常低的 RDS(ON)以减少传导损耗。该转换器还具备较低的输出电压纹波以及适用于 500kHz 开关频率的小型外部电感器和电容器。此外,PW2163 采用瞬时 PWM 结构,能够实现快速瞬态响应,在高降压应用中表现出色。
  • 7.4V5V2A转换8.4V5V2A
    优质
    本产品是一款高效的电压转换解决方案,支持从7.4V到5V及8.4V到5V的高效转换,能提供最大2A的电流输出。 7.4V转5V、8.4V转5V以及6V降压到5V的电路设计可以使用PW2162这款DC-DC同步降压转换器芯片来实现,该芯片支持输入电压范围在4.5V至16V之间,并且能够提供最大负载电流为2A。输出电压是可调节的。同样地,7.4V和8.4V转到5V也可以通过这个电路图完成。
  • 5V3.3V转换.pdf
    优质
    本PDF文档详细介绍了将5伏特电压降低至3.3伏特的转换电路原理与设计,并提供了相应的芯片应用图解。 低压差线性稳压器(LDO)是一种常用的电压转换电子器件,能够将较高的输入电压转化为较低的稳定输出电压。其显著特点包括低压差、高精度输出电压以及低功耗电流,适用于需要高效电压转换的应用场景。 PW6566系列LDO利用CMOS技术开发而成,并具有以下特性: 1. 低压差:内置低通态电阻晶体管,使输入和输出之间的压差较小,在小范围的电压变化下仍能保持高效率。 2. 高精度输出电压:确保转换过程中的稳定性和精确性。 3. 低功耗电流:适用于对电流需求较低的应用场合。 在5V降至3.3V或更低的情况下,LDO可以提供1A以下的电流,在许多电子设备中已经足够使用。如果需要更大功率(如1A、2A或更高),则应选择内置整流MOS管的降压芯片,这类芯片因内部规格不同而成本各异。因此,根据具体应用场景的需求来决定选择哪种方案以实现性能和成本的最佳平衡。 PW2058和PW2059是集成主开关与同步整流器的高效降压转换器,无需外部肖特基二极管即可工作,并支持从2V至6V输入电压范围,适合单电池锂离子供电设备。其特点包括: 1. 高效率:可达到96%的最大效率。 2. 恒频运行:在1.5MHz的工作频率下确保高转换效率。 3. 输出电流可达800mA。 4. 低负载时的高效PFM模式,保持轻载下的高能效和小纹波输出。 PW2051是一款CMOS降压型DC-DC调节器,具备如下特点: 1. 高效率:最大可达到95%。 2. 输出电流可达1.5A。 3. 低静态电流(40μA),适合于低功耗应用环境。 4. 输出纹波小于±0.4%,并且支持PWMPFM自动切换,确保全负载范围内的高效性和小纹波。 另外,PW2052和PW2053也是高效率的同步降压调节器: 1. 两者均能达到96%的最大效率。 2. 内部开关具有低电阻特性(即低RDS(ON)),有助于减少损耗并提高能效。 3. 支持可调占空比,能够自动切换PWMPFM模式以维持高效率和小纹波输出。 对于需要支持从3.7V到150V输入电压范围的应用场景,这些芯片提供了灵活的解决方案。设计者应根据具体需求选择合适的器件,确保实现稳定供电并优化电路性能。同时,在实际应用中还需要考虑外围组件的选择与布局以进一步提高整体系统效能,并且要保证BOM(物料清单)的准确性和合理性来控制生产成本和保障电路可靠性。 在进行设计方案之前,设计人员应详细查阅芯片的数据手册,充分理解其特性和参数以及适用条件后做出恰当的设计选择。
  • 220V转5V 2A方案原理
    优质
    本设计提供了一种将220伏交流电转换为稳定5伏直流电并能输出最大2安培电流的电路解决方案。包括详细的电路原理图及关键元件说明,适用于手机充电器、LED灯等低电压设备供电需求。 提供220V转5V、2A的成熟解决方案原理图,供开发者参考。
  • 5V和3.7V降1.2V稳压.pdf
    优质
    本PDF文档提供了一种将5V与3.7V电源电压降至稳定1.2V输出的电路设计方案及详细电路图,适用于电子设备中低压供电需求。 寻找适用于5V到1.2V及3.7V到1.2V降压的稳压芯片,包括大电流DC-DC解决方案、LDO(低压差线性稳压器)以及各种降压IC。需要选择能够提供至少3A输出电流并稳定在1.2V电压的芯片型号。请参考相关电路图和选型表来确定合适的LDO及降压IC产品。
  • MC34063包含Proteus仿真5V24V升压
    优质
    本资源提供基于MC34063芯片设计的5V至24V升压电路的Proteus仿真电路图,适用于电源变换和电压提升应用。 由于5V转24V电压模块的压差较大,因此在网上很难找到现成的电路图。本人搜集了大量资料,设计了一套电路图,并通过Proteus软件进行了仿真验证。此外,还包含了PCB板原理图和PCB布局图。
  • PL7501C集成MOS管5V升压8.4V、1A充IC.pdf
    优质
    这是一份关于PL7501C芯片的技术文档,该芯片集成了MOS管并能将输入电压从5V提升到8.4V以给电池提供1A电流的高效充电解决方案。 USB 5V输入可以升压给双节锂电池充电芯片IC使用,并支持最大5V2A的USB输入。智能兼容5V1A、0.5A充电器,确保即使在不理想的供电条件下也能正常工作。
  • 5V12V升压
    优质
    本设计提供了一种高效的5V至12V升压电路方案,适用于多种电子设备中需要电压提升的应用场景。通过优化电路结构与元件选择,实现高效率、低噪音及宽输入电压范围的电源转换功能。 由于电路需要24伏特和5伏特电压,并且每个电压有各自的地线,工作电流达到3安培,在设计并仿真该电路时遇到了问题:单独对两个部分进行仿真都没有问题,但当将它们合并后一起仿真就会出现问题。这是否是因为不同的地导致的呢?仿真的时候出现了错误信息。
  • 5V-5V可调直流稳压
    优质
    本设计提供一个从5V调整至-5V的可调直流稳压电源电路,适用于各种电子实验与设备测试需求。 摘要:随着科技的进步,电气与电子设备在日常生活、科研以及学习等领域得到了广泛应用。作为这些设备必不可少的能源供应部件,电源的需求量不断上升,并且对其功能及稳定性等性能指标的要求也越来越高。因此,对电源的研究开发已成为新技术和新设备研发的重要环节,在推动科技进步方面发挥着关键作用。 设计直流稳压电源时,可以通过相关理论计算出电路中各元件的具体参数值,使整个系统的电压调整率、电流调整率、负载调整率以及纹波电压等性能指标达到预期要求。使用Multisim仿真软件对所设计的电路进行模拟调试,确保各项技术标准得以满足。 直流稳压电源的设计流程是:首先将220V,50Hz交流电通过变压器降为适合的交流电压值;接着利用整流电路将其转换成直流电;然后经过滤波器去除直流电中的残留交流成分;最后借助集成稳压器构成稳定输出直流电的装置。集成稳压器具有体积小巧、重量轻便、便于安装调试以及可靠性高等优点,非常适合此类应用需求。
  • 基于LT1931+5V-5V负输出转换
    优质
    本设计采用LT1931芯片构建了一种有效将正电源(+5V)转化为同等幅度的负电源(-5V)的电路,适用于需要双极性供电的应用场景。 LT1931/LT1931A采用双电感器负输出拓扑结构,这种设计可以在输入侧和输出侧对电流进行滤波处理。使用陶瓷输出电容器可以将输出电压的波动降至接近1mVP-P的程度。固定频率开关确保了低频噪声不会出现在干净稳定的输出中,这在充电泵解决方案下通常是难以避免的问题。当负载突然增大时,其低阻抗输出能够保持在其标称值的1%以内。此外,36V的开关电压允许输入与输出之间的差分电压高达34V。