
Adams-Bashforth-Moulton积分方法(八阶)- MATLAB开发
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
本项目提供了一个MATLAB实现的Adams-Bashforth-Moulton预测校正方法,用于求解常微分方程初值问题,采用八阶精度格式以提高数值计算的准确性。
线性多步法用于求解常微分方程的数值解。从概念上讲,数值方法始于初始点,并逐步向前推进一小段距离以找到下一个解点;这一过程会反复进行后续步骤来构建解决方案。单步法(如欧拉法)仅依据前一个点及其导数确定当前值。Runge-Kutta 方法则通过采取一些中间步骤(例如半步)获得更高阶的精度,但会在迈出第二步之前丢弃所有先前的信息。多步方法旨在提高效率,其方式是保留并利用来自以前计算步骤的数据而非直接舍去它们;因此,这些方法会参考几个之前的点和导数值。在线性多步法中,则使用了前一个或多个数据点及其对应导数的线性组合来确定当前解值。
对于偏心率为 e = 0.1 的情况,在从 t0 = 0 到时间 t = 86400 秒(即一天)内,实现了归一化二体问题的积分。
全部评论 (0)
还没有任何评论哟~


