Advertisement

基于STM32的DC-DC数控电源,以及数控开关电源。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
利用STM32单片机所构建的数控电源系统,具备对输出电压进行精细调整的功能,能够精确地调节至0.1伏特(V)的幅度。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32DC-DC
    优质
    本项目设计了一款基于STM32微控制器的DC-DC数控电源,能够实现高效稳定的直流电压转换与调节,适用于多种电子设备。 基于STM32单片机设计的数控电源可以实现0.1伏特的步进电压调节。
  • 参赛作品《DC-DC》完成版-RT.zip
    优质
    《DC-DC数控开关电源》是一款创新性的电力电子设备设计,采用先进的数字控制技术优化了传统开关电源性能,适用于多种电子产品供电需求。此版本为最终完善版。 参赛作品《DC-DC数控开关电源》已完结。
  • DC/DC PWM
    优质
    DC/DC PWM开关电源是一种高效的电力转换装置,通过脉宽调制技术将直流电转换为另一固定或可调节电压的直流电输出,广泛应用于电子设备和通信系统中。 1. 概述 2. DC-DC变换器的基本拓扑电路 3. 带变压器隔离的DC-DC变换器原理 4. PWM控制原理
  • 设计DC/DC
    优质
    本项目致力于研发一种创新性的负电压DC/DC开关电源,采用先进的设计理念和技术方案,旨在提高转换效率和稳定性。通过优化电路结构及选择高效半导体器件,实现了宽输入范围、高功率密度与良好的负载瞬态响应特性,适用于各种电子设备的电源管理需求。 随着电子技术的快速发展,现代电子测量装置通常需要负电源来为内部的集成电路芯片与传感器供电。例如集成运算放大器、电压比较器以及霍尔传感器都需要这种类型的电源。负电源的质量直接影响到这些设备运行的表现,甚至可能导致采集的数据出现显著偏差。目前,大多数电子测量装置采用抗干扰能力强且效率高的开关电源作为其负电源解决方案。
  • 稳压DC-DC详细路图
    优质
    本资料详尽介绍了稳压电源、DC-DC电源和开关电源的工作原理及其电路设计,包含大量实用电路图,是电子工程爱好者和技术人员不可或缺的学习与参考资源。 一、稳压电源 1. 3~25V电压可调电路图:此稳压电源的调节范围在3.5V到25V之间,输出电流大,并采用可调稳压管式电路以获得平稳的输出电压。工作原理如下:整流滤波后的直流电压由R1提供给调整管基极使其导通,在V1导通时通过RP、R2使V2也导通,随后V3也开始导通;此时,V1、V2和 V3 的发射极与集电极的电压不再变化(其作用类似于稳压管)。调节 RP 可以得到稳定的输出电压,而 R1、RP、R2 和 R3 的比值决定了电路输出的电压。 2. 10A/3~15V可调稳压电源:无论是在电脑维修还是电子制作中都离不开稳定可靠的直流电源。这里介绍一个可以从3V到15V连续调节,最大电流可达10A的稳压电源方案。该设计采用高精度标准电压源集成电路TL431,并具备温度补偿特性以确保更高的稳压精度,适用于大部分常规维修需求。 二、开关电源UC3842工作原理:下图展示了 UC3842 的内部结构框图和引脚配置。UC3842 使用固定频率脉冲宽度可调的控制方式,共有八个引脚。各引脚的功能如下: ①脚是误差放大器输出端,外部连接电阻以实现特定功能。 其余部分未详细列出,如果需要完整信息,请参考相关技术文档或资料。
  • MultisimTL494 DC-DC Buck仿真
    优质
    本研究利用Multisim软件对TL494芯片构建的Buck型DC-DC开关电源进行仿真分析,探讨其工作原理与性能优化。 输入电压为48VDC,输出电压可在18至24VDC之间调节,最大输出电流为2A,开关芯片采用TL494。所有元件值经过详细计算,包括反馈回路分析、各个电阻阻值的计算以及占空比的确定。电路还包含过流保护功能。
  • 芯片DC-DC软启动路.pdf
    优质
    本文探讨了一种基于芯片设计的直流至直流(DC-DC)开关电源软启动电路。该电路通过优化启动过程减少浪涌电流,提高系统稳定性和可靠性,并详细分析了其工作原理和应用优势。 一种DC-DC开关电源片上软启动电路的PDF文档介绍了该电路的设计与实现方法。
  • 稳压 DC-DC 路恒流
    优质
    本课程涵盖稳压电源、开关电源、DC-DC变换器和充电电路的设计原理及应用,并深入讲解恒流源电路的工作机制。 电路图是用物理电学标准化的符号表示各元器件组成及关系的一种原理布局图。它能够展示组件间的工作原理,并为分析性能、安装电子和电器产品提供规划方案,满足研究与工程规划的需求。
  • DC/DCEMI探讨
    优质
    本文章围绕DC/DC电源的工作原理、设计技巧及其电磁干扰(EMI)问题进行深入讨论和分析,旨在为工程师提供有效的解决方案。 DC/DC转换器的噪声主要受三个参数影响:占空比(Duty)、开关频率(Fs)以及上升时间(Tr)。其中,开关频率的影响尤为显著,不仅对电磁兼容性有重要影响,在不同应用中也会表现出不同的效果。 1. **DC/DC噪声源特性** - **占空比**:随着占空比的增加,噪声幅度也随之增大。 - **开关频率**:它决定了噪声在频谱上的分布。通常可以将开关频率分为几大类: 20~100kHz:由于电感较大导致的成本和尺寸问题,低频设计逐渐不再成为首选方案。 100~550kHz:这一区间是大多数应用的主要选择范围。 开关频率不仅影响电感的大小,还会影响转换器的整体效率。
  • DC/DC模块并联供系统均流制研究
    优质
    本研究聚焦于提高DC/DC开关电源模块在并联运行时的电流均衡性,探讨了多种均流控制策略及其实现方法,旨在优化系统性能与稳定性。 本段落介绍了由两个DC/DC开关电源模块并联构成的供电系统电路结构及其工作原理。该系统采用ARM芯片STM32作为主控芯片来生成驱动功率开关器件MOSFET所需的PWM脉冲,实现了对输出电压及各模块电流的全数字闭环PI控制。此系统能够确保输出电压稳定,并实现两个电源模块间电流的比例分配;同时具备输出负载短路以及延时恢复功能。通过仿真和实验验证了该系统的控制技术正确且可行。