本实验为微程序控制器设计的一部分,旨在通过实践加深对微程序控制原理的理解,内容涵盖微指令编码、微程序流程设计及其实现。
微程序控制器设计实验是计算机组成原理课程中的重要实践环节之一。该实验旨在帮助学生理解并掌握时序产生器、微程序控制器的构造原理以及机器指令与微指令之间的关系。
一、实验电路
本试验采用两片GAL22V10芯片(U6和U7),可生成两级等间隔的时序信号T1至T4及W1到W4。一个完整的W周期由四个连续的T脉冲组成,代表一次微指令执行或硬连线控制器的一个工作节拍。TIMER1芯片(U6)负责产生这些基本时间信号,并且还包含了控制时钟CLK1以生成相应的W波形。MF输入端连接实验平台上的晶体振荡器输出(频率为1MHz),确保了整个系统的稳定运行。
二、数据通路
微程序控制器的设计基于特定的数据路径和指令集进行,本实验中加入了程序计数器(PC)、地址加法器(ALU2)以及中断地址寄存器(IAR),它们与先前的模块共同构成了完整的系统。PC及ALU2各自使用一片GAL22V10实现存储功能,并能够执行递增或偏移操作;而R4则由两片74HC298组成,具备选择输入端的功能;IAR采用了一片74HC374,在中断发生时用于保存当前地址。
三、微指令格式与控制器设计
本实验的微指令长度为35位,并根据提供的12条机器指令和总体控制信号图来规划相应的微程序。为了确保控制器能够准确无误地运行,必须综合考虑各种因素如时间序列、数据路径以及控制信号之间的相互关系。
四、实验目标
此次试验的主要目的是:
- 理解并掌握时序产生器的工作原理;
- 深入理解微指令与机器级命令间的关联性,并且熟悉微程序控制器的基本构造法则;
五、结果分析
通过本次设计,我们成功地验证了所构建的微程序控制器的有效性和准确性。实验结果显示,合理的微指令格式对于提升整个系统的性能至关重要。
六、总结
综上所述,此次关于微程序控制的设计实践不仅加深了学生对计算机组成原理的理解和掌握程度,同时也为课程报告增添了重要的实证依据。