Advertisement

TLP521光耦资料汇总:包含引脚图、使用说明及线路图

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资料汇总全面介绍TLP521光耦特性,包括详细的引脚配置图、实用的使用指南以及多种应用电路图,助力高效设计与开发。 光耦TLP521资料包括引脚图、使用说明以及线路图。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • TLP521使线
    优质
    本资料汇总全面介绍TLP521光耦特性,包括详细的引脚配置图、实用的使用指南以及多种应用电路图,助力高效设计与开发。 光耦TLP521资料包括引脚图、使用说明以及线路图。
  • TLP2362使线
    优质
    本资料汇总全面介绍TLP2362光电耦合器,涵盖引脚配置图、详细使用指南和电路布设示例,助力深入理解与应用。 TLP2362是一种集电极开路输出型逆变器逻辑类型耦合器,支持以10Mbps的速度进行高速数据传输,特别适用于绝缘RS-422和RS-485通信以及其他信号传输场景。相关的资料包括引脚图、使用说明以及线路图等信息。
  • TLP521详解
    优质
    《TLP521光耦详解资料》深入剖析了TLP521光耦合器的工作原理、电气特性及其应用领域,为工程师和技术人员提供了详尽的设计参考和故障排除指南。 ### TLP521 光耦相关知识点 #### 一、产品概述 TLP521系列光耦合器(包括TLP521、TLP521-2、TLP521-4及其衍生型号如TLP521GB、TLP521-2GB、TLP521-4GB等)是一种高密度封装的光电耦合隔离器,由红外发光二极管和NPN硅光敏晶体管组成。该系列产品采用空间高效的双列直插式塑料封装设计。 #### 二、产品特性 - **电流传输比**:具备高电流传输比(最小值为50%),确保了稳定的信号传递。 - **高隔离电压**:支持高达5.3kVRMS或7.5kVPK的隔离电压,适用于需要高电气隔离的应用场景。 - **高击穿电压**:集电极-发射极击穿电压(BVCEO)最低可达55V,增强了器件在高压环境下的可靠性。 - **全面测试**:所有电气参数均经过100%测试,保证了产品的性能一致性。 - **定制选项**:提供多种定制选择,如不同的引脚间距、表面贴装封装及卷带包装等,满足不同应用场景的需求。 #### 三、产品规格 根据文档中的表格信息,可以了解到TLP521系列光耦的部分关键规格如下: - **输入端**: - 输入正向电压(VF):在10mA的工作电流下范围为1.0V至1.3V。 - 反向电流(IR):在4V的反向电压下,最大值为10μA。 - **输出端**: - 集电极-发射极击穿电压(BVCEO):在0.5mA的电流下最小值为55V。 - 发射极-集电极击穿电压(BVECO):在100μA的电流下,最小值为6V。 - 集电极-发射极暗电流(ICEO):在20V的电压下最大值为100nA。 - **耦合特性**: - 电流传输比(CTR):在特定条件下最小值为50%。这一特性对于实现高效且可靠的信号传输至关重要。 #### 四、应用场景 TLP521系列光耦因其出色的性能特点,在多个领域内得到了广泛应用,包括但不限于计算机终端的数据通信接口保障数据安全;工业控制系统中的恶劣环境下的信号隔离确保系统稳定性和安全性;测量仪器作为信号隔离组件保证测量结果的准确和可靠;不同电位系统的信号传输如电源变换器、通信设备等场合实现可靠的信号传递。 #### 五、认证与标准 - **UL认证**:产品已通过UL认证,文件编号为E91231。 - **VDE 0884**:符合VDE 0884标准,提供引脚形式(STD)、G型引脚以及表面贴装版本,并且SMD版本已经过CECC 00802标准认证。 - **BSI认证**:获得了BSI证书。 #### 六、封装与尺寸 文档提供了TLP521系列光耦的封装相关尺寸信息,包括外形尺寸和引脚布局等。这为设计人员选择合适的安装方式提供了重要参考。例如,可根据不同的应用需求选择不同类型的封装形式,如表面贴装或双列直插式塑料封装。 总之,凭借其高隔离电压、高电流传输比等特点,TLP521系列光耦在众多行业中表现出色,在实现信号隔离方面是理想的选择。
  • LCD1602功能
    优质
    本资料详细介绍了LCD1602液晶显示屏各引脚的功能与作用,并提供了清晰直观的引脚布局图,帮助用户快速掌握其工作原理和应用方法。 LCD1602采用标准的16脚接口: - 第1脚:VSS为电源地。 - 第2脚:VCC接5V电源正极。 - 第3脚:V0用于调节液晶显示器对比度,当连接到正电源时对比度最弱,接地时对比度最高。如果对比度过高会产生“鬼影”,可以通过一个10K的电位器来调整对比度。 - 第4脚:RS为寄存器选择端,设置为高电平(1)表示数据寄存器被选中;低电平(0)则指令寄存器被选中。 - 第5脚:RW为读写信号线。当该引脚处于高电平时进行读操作;在低电平时执行写入操作。 - 第6脚:E或EN端作为使能端,用于控制信息的传输和命令的执行。它在接收到一个正向脉冲时会读取数据,在经历负跳变(下降沿)时则触发指令的执行。 - 第7至14脚:D0到D7代表8位双向数据总线接口。 - 第15与第16脚为空置端或背光电源连接,其中第15脚为背光源正极,而第16脚则是负极端。
  • 继电器驱动电
    优质
    本资料汇集各类继电器与光耦合器驱动电路设计,为电子工程师提供详尽的技术参考和创新灵感。 光耦驱动继电器电路图(一):1U1的第1脚可以连接至12V或5V电源,当有电压输入时,1U1导通并触发1Q1导通;此时在3端口处测得0V,并且线圈两端将获得大约为11.7V的工作电压。若未接电或者接地,则电路中的元件不工作,即1U1不通和1Q1截止状态,在此状态下3端子的读数约为11.9V,继电器线圈两端则没有供电。 注:“DYD_CPU_OUT”与LPC2367相连并输出高低电平控制信号。当“DYD_CPU_OUT”处于高电平时,则电路中的元件不工作(即1U4不通和1Q7不通),此时UCE=12V,继电器线圈两端电压为0V;若该引脚输入低电平,“DYD_CPU_OUT”则导通,使得U43约为1V、U3约等于11V,并且最终导致电路断开(即UCE降至0V)并使能驱动端口Q7-3输出至接近于0的电压值。此时继电器线圈两端获得大约为11.7V的工作电压。 这两种配置适用于CPU初始化时GPIO口处于高电平状态下,以防止在启动过程中造成误动作现象。“DYD_CPU_OUT”与LPC2367相连并输出高低电平控制信号,在低电平时电路中的元件不工作(即1U4不通和1Q7不通),此时UCE=12V,并且继电器线圈两端电压为0V;若该引脚输入高电平,“DYD_CPU_OUT”则导通,使得U43约为1V、U3约等于11V并最终导致电路断开(即UCE降至0V)和驱动端口Q7-3输出至接近于0的电压值。此时继电器线圈两端获得大约为11.7V的工作电压。 此图表示的是高电平使能模式下,继电器常闭触点连接负载的状态。
  • 合器测试电
    优质
    本资料汇集了多种光电耦合器测试电路图,旨在帮助电子工程师及爱好者深入了解其工作原理和应用方法。 光电耦合器在许多应用中被广泛使用。根据其特性设计了一个简单的测试电路,该电路易于操作且准确可靠。 当电源接通后,LED不会发光。按下开关S2,LED会开始发光。通过调节RP旋钮,可以观察到LED的亮度发生变化,这表明光电耦合器工作正常。 此印刷电路板适用于多种型号的光电耦合器(如TLP621、TLP521等),在使用不同引脚数量的光电耦合器时,请根据说明进行相应的短路处理。对于四针和六针的光电耦合器,分别需要将S3的不同端子短接。 另外设计了一个小巧而实用的小型鉴别装置来快速判断光电耦合器的好坏(电路图如上所示)。当正确区分并插入光电耦合器输入、输出引脚后,如果发光二极管VD1和VD2同步闪烁,则表明该光电耦合器是完好的。若VD1未出现闪烁现象,则说明存在问题。
  • )PCF8591模块AD/DA转换详解(原理、测试程序使)-电方案
    优质
    本资料详细解析了PCF8591模块的AD/DA转换功能,涵盖工作原理、电路图和具体的应用实例。包含详尽的操作指南与测试代码,为学习者提供了全面的参考资源。 PCF8591是一款单片集成、单独供电的低功耗CMOS数据获取芯片。该器件具有4个模拟输入端口、一个模拟输出端口以及一个串行I2C总线接口,支持硬件地址编程功能,通过A0, A1和A2三个引脚可设置不同的硬件地址,在同一I2C总线上最多可以连接8个PCF8591器件。数据传输采用双线双向的I2C通信协议。 模块特点如下: - 该模块使用了PCF8951芯片; - 支持外部4路电压输入采集,范围为0至5伏特; - 集成了光敏电阻和热敏电阻,能够通过AD转换器获取环境光线强度及温度的精确数值; - 提供了一个可调电压(由蓝色电位器控制)的模拟输出端口用于测量; - 模块上设有电源指示灯,在模块通电时会亮起; - 还有一个DA输出指示灯,当模拟信号转换后的电压达到一定水平时会被点亮,并且随着输出电压增大而更加明亮。 模块尺寸为3.6厘米乘以2.3厘米的标准双面板设计,板厚1.6毫米。整个电路布局美观大方,并在四周设有直径为3mm的通孔用于固定安装。
  • PC929与功能其常见应
    优质
    本资料深入解析PC929芯片的详细引脚配置及各引脚的功能,并提供多种基于该芯片的应用电路实例。 PC929是一款内置了IGBT短路保护电路和直接驱动电路的光电耦合器,非常适合逆变器驱动MOS-FET IGBT应用。它的高速响应时间(tPLH, tPHL: MAX. 0.5ms)和高隔离电压(Viso:4000Vrms)使其在工业环境中表现出色。此外,它还采用了半间距引脚间距(p=1.27mm)的封装类型,并获得了UL认证。 PC929的内部连接图及引脚定义如下: - 1:阳极 - 2:阳极 - 3:阴极 - 4、5、6、7:NC(不连接) - 8:FS(错误信号输出) - 9:C(公共地) - 10:GND(地) - 11:O2(输出2) - 12:O1(输出1) - 13:VCC(电源电压) - 14:GND(地) PC929的绝对最大额定值包括: - IF (正向电流) :20mA - VR (反向电压):6V(Ta=25˚C) - VCC(供电电压) :35V - O1输出电流IO1:0.1A - O1峰值输出电流IO1P: 0.4A - O2 输出电流 IO2 :0.1A - O2 峰值输出电流 IO2P :0.4A - O1 输出电压 VO1 :35V - PO (功耗):500mW - 过流检测电压VC: VCC - 过流检测电流IC: 30mA - 错误信号输出电压VFS: 550V - 错误信号输出电流IFS :20mA - Ptot (总功耗) :4000Vrms - Topr (工作温度): -25到+80˚C - Tstg(储存温度):-55到+125˚C - Tsol(焊接温度): 260˚C(持续时间不超过10秒) PC929主要应用于IGBT控制用于逆变器驱动。其内部的光电耦合器是一种将光检测元件和信号处理电路集成在同一芯片上的OPIC,是SHARP公司的注册商标。 在实际应用中,PC929可以保护IGBT在过流情况下不受损害。内置的IGBT短路保护电路能够在检测到过流时迅速切断驱动信号,避免了因电流过大导致IGBT损坏的问题。此外, PC929 的直接驱动电路可为 IGBT 提供最大 0.4A 峰值输出电流,满足其在启动过程中的需求。 设计工程师需要考虑PC929的快速响应时间和高隔离电压特性,在电磁干扰较大和需强电绝缘的应用场景中使用。由于高速反应能力, PC929能够准确及时地处理异常信号,提升系统稳定性和可靠性。 需要注意的是,在应用电路设计时必须遵循其绝对最大额定值以避免器件损坏。在PC929的封装图中可以清晰看到每个引脚的功能和位置信息,这有助于实际电路设计与焊接过程中的参考使用。 对于选择PC929作为逆变器驱动IGBT保护元件的设计工程师来说,了解并熟悉其电气特性和应用电路是进行高效电路设计及故障排除的关键。
  • 74LS161功能表
    优质
    本资料详细介绍74LS161集成电路的引脚布局和各管脚的功能说明,包含详细的管脚功能表,帮助电子工程师和技术人员更好地理解和应用该芯片。 74ls161引脚图与管脚功能表资料提供了关于该集成电路的详细信息,包括各个引脚的具体作用和连接方式。这些资料有助于更好地理解和使用74ls161芯片进行电路设计和开发工作。