Advertisement

HMC830芯片设计出低相噪、低杂散频率的源。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
为了应对频率源产生的相噪对采样数据信噪比的负面影响,以及杂散信号降低接收机灵敏度的问题,我们提出了一种旨在降低相噪和杂散的创新设计方案。该设计方案充分利用了Hittite公司最新推出的集成电压控制 Oscillator (VCO) 的锁相环芯片 HMC830,并采用多个低噪声稳压器作为供电部分。此外,参考频率源选用Pascall公司的 OCXO 晶振,环路滤波器则采用无源四阶结构。设计过程中,我们借助 Hittite PLL Design 软件进行优化,并进一步通过 C8051F300 单片机对锁相环芯片进行精细的寄存器操作。实验验证表明,当鉴相频率设定为 100 MHz,输出频率为 1.8 GHz 时,在整数分频模式下,相位噪声表现出优异的性能,达到了 -112.2 dBc/Hz@1 kHz;同时,杂散抑制度也达到了 -75.6 dBc。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于HMC830声和
    优质
    本文介绍了一种利用HMC830芯片设计的高性能频率源,该设计显著降低了相位噪声与杂散信号,适用于高精度无线通信系统。 针对频率源的相噪会恶化采样数据的信噪比,而杂散则会降低接收机灵敏度。为此提出了一种低相噪、低杂散的设计方法。该设计采用Hittite公司新推出的集成VCO(压控振荡器)锁相环芯片HMC830,并在供电部分使用多个低噪声稳压芯片,参考频率源则选用Pascall公司的OCXO晶振。此外,环路滤波器被设定为无源四阶设计,并利用Hittite PLL Design软件进行详细规划。同时,在此方案中还引入了C8051F300单片机以实现对锁相环芯片的寄存器操作。 实验结果表明:在鉴相频率设为100 MHz且输出频率设定为1.8 GHz的情况下,整数分频模式下该设计实现了-112.2 dBc/Hz@1 kHz的相位噪声水平及-75.6 dBc的杂散抑制效果。
  • 基于STM32HMC830综合控制程序
    优质
    本项目开发了基于STM32微控制器的HMC830锁相环频率综合芯片控制程序,实现了灵活且高效的信号生成与处理功能。 STM32控制锁相环频综芯片HMC830的程序包含详细的注释,能够初始化生成一个频率,并且可以通过串口更改输出的频率。需要注意的是,该文件中没有包括与串口相关的代码部分。
  • 适用于射SOC声高电抑制比LDO.pdf
    优质
    本文介绍了设计用于射频SoC芯片的低噪声、高电源抑制比(LDO)稳压器的技术和方法。通过优化电路结构与参数,该LDO能够在宽电压范围内提供稳定的输出,并有效降低电磁干扰对RF性能的影响。适合无线通信设备中的应用需求。 这篇文档讨论了用于射频SOC芯片的低噪声高电源抑制比LDO的设计与应用。
  • 100MHz晶体振荡器
    优质
    本项目专注于设计一款高性能100MHz低相噪晶体振荡器,旨在通过优化电路结构与材料选择,实现卓越的频率稳定性和极低的相位噪声,广泛应用于精密通信和测量领域。 相位噪声是衡量振荡器性能的关键指标之一。本段落基于振荡器反馈理论提出了一种新的振荡器相位噪声模型,并利用Matlab对该模型进行了仿真分析,得到了单边带相位噪声功率谱密度的结果。通过与其它方法的仿真结果对比发现,两者的吻合度较高。在该模型指导下设计并实现了一个低相噪晶体振荡器,实测数据也证实了仿真的准确性。
  • 功耗CMOS放大器
    优质
    本研究专注于低功耗CMOS低噪声放大器的设计,致力于在保持高性能的同时大幅降低能耗。通过优化电路结构与参数选择,实现高增益、宽频带及低噪声指数的目标,在无线通信领域具有重要应用价值。 针对低功耗电路设计要求,在SMIC 0.18 μm CMOS工艺基础上,我们设计了一种电流复用的两级共源低噪声放大器。仿真结果显示,当工作频率为2.4 GHz时,该放大器具有26.26 dB的功率增益、-27.14 dB的输入回波损耗(S11)、-16.54 dB的输出回波损耗(S22)和-40.91 dB的反向隔离度。此外,其噪声系数为1.52 dB,在供电电压为1.5 V的情况下,静态功耗仅为8.6 mW,并且电路运行稳定可靠。
  • X~Ku波段小步进合成器研究.pdf
    优质
    本文研究了X-Ku波段小步进低相位噪声频率合成器的设计方法,探讨了其关键技术及应用前景。 本段落主要介绍并分析了混频环微波波段频率合成器方案及其在相位噪声方面存在的问题,并提出了解决方案。首先,文章阐述了频率合成技术在射频和微波通信领域的应用,并强调了微波波段频率合成技术的重要性。接着,文中详细探讨了传统频率合成器实现过程中遇到的问题,例如倍频数较大导致的相噪恶化严重以及微波波段倍频需求带来的PLL(锁相环)频率步进降低、环路带宽减小等问题。 为解决这些问题,文章提出引入混频环结构,并对系统相位噪声进行了深入分析和改善。具体实现上,以11.1~13.1GHz频率合成器设计为例,设定步进为10MHz。根据传统方法,首先通过PLL生成2.775~3.275GHz的中间频段,并利用四倍频器得到最终输出频率。然而由于VCO(压控振荡器)近端相位噪声限制,整个合成器在该区域表现不佳。 为改善这一问题,文中引入了混频环结构设计,通过降低PLL对相位噪声和杂散的要求来优化系统性能。这种设计方案基于混频环原理选择合适的混频点频率及锁相环倍频比,并可通过倍频链或锁相环倍频两种方法实现。 在具体分析中提到,PLL作为频率合成器的核心部件,其内部包括参考源、鉴相器、环路滤波器和VCO等主要噪声来源。通过拉普拉斯变换可以得到开环与闭环传递函数,从而得知PLL具有低通特性并能有效过滤特定噪声。 文章最后验证了混频环方案的有效性,并展示了如何在高倍频需求及严格相位噪声要求的应用场景中优化频率合成器性能的工程创新方法。此设计案例对于微波通信、射频设计以及频率合成技术领域的工程师和学者具有较高参考价值,体现了理论与实践相结合的设计思路。 通过上述分析可以看出,在面对复杂的技术挑战时,采用混频环结构能够有效改善传统微波波段频率合成器在相位噪声方面的不足,并有助于推动相关领域的发展。
  • 基于单数字位差
    优质
    本项目旨在设计并实现一种基于单片机技术的低频数字相位差计。该设备能够精确测量两个信号之间的相位差,适用于科学研究和工程应用中的精密测试需求。 在现代电子测量技术领域,精确测量相位差是一项重要的技术指标。它广泛应用于电力系统、通信设备和科研实验等领域。随着技术的发展,低频数字式相位差计因其高精度和智能化的特点而成为研究热点。本段落将介绍一种基于单片机的低频数字式相位差计的设计方案,并探讨其工作原理和实现过程。 该设计的核心在于使用凌阳16位单片机Spce061A作为核心处理单元。单片机不仅负责控制整个测量系统的操作流程,还能够实现测量数据的精确处理和友好的用户界面显示。整个系统包含三个主要部分:相位测量仪、数字式移相信号发生器以及移相网络。 首先介绍的是相位测量仪的设计方案。在该设计中,通过利用异或逻辑门对两路方波信号进行处理,可以得到一个与两路信号相位差相对应的高频窄脉冲序列。这些脉冲再与基准频率的脉冲进行逻辑与操作,产生一系列用于计数的脉冲。两个独立的计数器分别对这两个脉冲序列进行计数,并通过单片机处理计算出精确的相位差值。这种设计思路有效地解决了方案一中低频段不稳定性问题和方案二中的高频误差问题,确保了系统的高精度与稳定运行。 频率测量部分采用了8254可编程定时器将被测信号转换成方波形式输入到单片机中,并通过定时中断控制计数器对输入信号进行精确计数。这种方法既简化硬件结构又保证了高测量精度,非常适用于需要高精度的场合。 数字移相信号发生器模块采用了直接数字合成(DDS)技术来生成两路具有不同相位的正弦波信号。利用预先存储的正弦波量化数据表以及单片机精确寻址控制,不同的地址对应着不同的相位差值,从而实现了精细的相位调整。这简化了传统移相电路设计,并提供了更高的灵活性和准确性。 为了提升用户体验,该系统还配备了LCD显示屏、红外键盘及语音播报功能等人性化界面元素。这些改进不仅提升了用户操作便捷性也降低了使用难度。 整个设计方案涵盖了包括但不限于相位测量、频率测量、数字移相信号生成以及DDS技术在内的关键技术领域。其中相位与频率的精确度是保证整体性能的关键;而先进的信号调制技术和语音交互功能则进一步增强了系统的实用性和互动体验。 综上所述,基于单片机实现低频数字式相位差计的设计方案结合了先进微处理器技术、高效信号处理方法及用户友好设计思想。它不仅实现了高效率和高精度测量目标,还满足了现代科技对精密测量设备的需求,并为相关领域提供了可靠的技术支持。
  • 基于MSP430G2553功耗声检测仪
    优质
    本项目设计了一款基于MSP430G2553超低功耗单片机的噪声检测设备,旨在实现环境噪音的实时监测与分析。通过集成高灵敏度麦克风模块和优化能耗算法,该仪器能够精确测量并记录不同时间段内的声音强度,并以数字形式显示结果,为用户提供可靠的噪音水平数据参考,适用于家庭、办公室及公共场所等多场景应用需求。 随着社会工业化的快速发展,人们的生活水平显著提高,但噪声的危害无处不在,并对人体健康造成严重威胁。因此,减少噪声危害已成为当务之急。噪声监测是提升生活质量、加强环境保护的重要环节。 本段落详细介绍了噪声监测系统的测量原理和系统组成,包括:噪声信号的转换与放大、V/F转换以及数据采集和显示的设计方案。外界产生的噪音通过传声器转化为音频电信号,经过放大的电信号再经由V/F变换输入到MSP430G2553单片机进行处理,并将结果以分贝值的形式在LCD12864屏幕上展示出来。此外,系统还利用了MSP430系列单片机的低功耗特性来实现噪声的实时监测。 该监测系统的优点在于操作简便、精度高且成本低廉,适用于各种实际环境中的噪音测量需求,并因其低能耗特点而更加适合各类应用场景。
  • 电子音与
    优质
    本课程聚焦于电子设备中的噪音问题及其控制策略,深入探讨了如何在电路设计中有效减少不必要的噪音干扰,确保高质量信号传输。 本书旨在运用随机噪声理论探讨电子系统中的噪声产生与传播问题,并介绍了各种噪声源的机制及模型、不同种类噪声的特点及其传播方式,以及线性电路中噪声分析的方法和测量技术。此外,书中还详细阐述了相关的内容。