Advertisement

该调速系统的仿真与设计涉及转速、电流和双闭环可逆直流控制。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该文档详细阐述了转速电流双闭环可逆直流调速系统的仿真以及设计过程。 核心内容涉及对该控制系统的模拟研究和具体设计方案的构建,旨在提供一套可靠且高效的调速技术。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 仿
    优质
    本研究聚焦于可逆直流调速系统的优化,通过构建转速和电流双闭环控制策略,进行详尽的仿真分析,并提出一种高效的设计方案。 本段落介绍了一种转速电流双闭环可逆直流调速系统的仿真与设计方法。该系统基于交、直流调速系统的基本知识及工程设计方法,并结合生产实际需求确定性能指标与实现方案,进行初步的设计工作。同时运用计算机仿真技术,在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行仿真和优化设计。这种方法可为电气工程及其自动化领域的研究提供参考依据。
  • 仿
    优质
    本研究探讨了在可逆直流调速系统中的转速和电流双重闭环控制策略,并通过仿真验证其性能,为工业电机控制系统的设计提供了理论依据和技术支持。 本设计基于运动控制课程的要求,旨在对转速电流双闭环可逆直流调速系统进行仿真与设计。该系统的目的是实现转速电流的双重闭环控制,并且能够满足可逆运行、静态无静差以及动态过渡过程快速等性能指标。 具体的设计参数如下: - 直流电动机控制系统:输出功率为 5.5KW,电枢额定电压 220V,电枢额定电流 30A,电机机电时间常数为1S,额定转速970rpm。 - 环境条件:电网的额定电压是380/220V,并且可以承受10%的波动;环境温度范围从-40℃到+40℃;湿度在10%-90%之间变化。 - 控制系统性能指标:电流超调量应小于等于5%,空载起动至额定转速时,转速超调量应不超过30%,调节比为20,并且静差率应该控制在不大于0.03的范围内。 设计内容与数据资料包括: - 主电路方案采用了直流脉宽调制系统和控制系统中的双闭环(即速度环和电流环)控制。 - 在主电路中,使用了不可控整流器25JPF40电力二极管以及带有续流二极管的IGBT构成H型结构PWM逆变器进行电能转换。此设计还包含了电流检测环节、电流调节器以及转速检测环节和转速调节器。 - PWM变换器的选择:考虑到系统需要实现电动机可逆运行的功能,本设计选择了带续流功能的绝缘栅双极晶体管(IGBT)构成H型结构PWM变频器。电源电压Us通过不可控整流二极管25JPF40提供,并且使用大电容C进行滤波处理。 - 功率开关管应能承受两倍于电网额定电压的峰值,因此选用了FGA25N120AN型IGBT。另外,在IGBT关断时通过二级管为电机回路中的电感储能提供释放路径。 该设计的主要特点在于采用了转速电流双闭环控制方案和PWM变换器技术等手段来实现调节电流与转速的目标,从而满足上述性能指标的设定要求。
  • 基于仿
    优质
    本项目研究并实现了一种基于转速和电流双闭环控制策略的可逆直流电机调速系统。通过MATLAB/Simulink进行详细建模与仿真分析,验证了该系统的动态性能及稳定性,并探讨其在工业自动化中的应用潜力。 转速电流双闭环可逆直流调速系统的仿真与设计文档探讨了如何通过构建一个包含速度环和电流环的控制系统来实现对直流电机的有效控制。该系统能够在不同运行模式下保持稳定性能,同时提高响应速度及动态特性。本段落详细介绍了系统的设计原理、硬件选型以及软件开发过程,并通过计算机仿真验证了系统的可行性和优越性。
  • -untitled.slx
    优质
    本模型为Simulink环境下设计的双闭环直流电机调速系统,专注于实现精确的转速和电流调控。通过内环电流调节及外环速度调节,确保电机高效稳定运行。 转速电流双闭环直流调速系统的搭建包括PI参数的整定。
  • Matlab Simulink仿详解:
    优质
    本文章深入探讨了基于Matlab Simulink平台的直流电机转速和电流双闭环控制系统仿真技术,详细解析其工作原理及应用方法。 直流电机双闭环控制系统:转速与电流双闭环调速的Matlab Simulink仿真详解 本段落详细介绍了如何使用Matlab Simulink进行直流电机双闭环控制系统的仿真实验,特别关注于转速与电流双闭环调速技术的应用和实现。通过系统化的理论讲解结合具体的实践操作步骤,帮助读者理解和掌握该控制系统的设计原理及其在实际工程中的应用价值。 关键词:直流电机;双闭环控制系统;转速电流双闭环调速;Matlab Simulink仿真;配套文档 此外还提供了一篇关于直流电机双闭环调速系统的《Matlab Simulink仿真实践指南》,旨在为初学者或具有一定基础的读者提供更多实用的学习资源和案例分析,以促进更深入的理解与研究。
  • 基于其MATLAB仿.zip
    优质
    本资料探讨了以转速和电流为双重控制对象的直流电机调速系统设计,并利用MATLAB进行了深入的仿真研究。 设计题目:转速与电流双闭环直流调速系统控制器的设计 电机参数如下: - 他励直流电动机型号,额定功率185W,额定电压220V,额定转速为1600rpm;电枢电流达到1.1A。转动惯量J=0.06kg*m^2, 电枢电感La=326mH。 - 电机的电阻R_a = 23Ω。过载倍数λ等于1.1。 电力变换装置:晶闸管三相全控桥式整流电路,K_s为110s;主电路等效电阻 R_e=R_c+R_a=41 Ω(其中L_a表示电感值)。 - 给定电源电压最大值为5V。调节器输出限幅电压设定为5V。 滤波时间常数:电流环采用一阶RC滤波环节,其时间常数T_i = 0.001s;转速环同样使用一阶RC滤波环节,其时间常数T_n=0.038s。 技术指标要求: - 在100rpm到1500rpm范围内调节无静差。 - 起动至额定转速过程中电流超调小于10%;空载起动时的转速超调也应控制在不超过10%以内。 仿真需验证上述性能指标是否满足要求,特别强调本次仿真实验中设定调节器输出限幅电压为5V, 给定电源电压最大值同样设置为5V。
  • 基于仿模型.zip
    优质
    本资源提供了一个基于MATLAB/Simulink环境下的直流电机控制系统仿真模型,采用转速和电枢电压(或电流)双重反馈回路设计,以实现高效精确的速度调节。 转速电流双闭环控制直流调速系统的仿真模型使用了以下参数:转速调节器ASR的Kp为17.72、Ki为1/0.087;电流调节器ACR的Kp为2.47,Ki为1/0.065。积分环节限幅值和调节器输出限幅值未具体给出数值。 三相晶闸管整流器SCR参数如下:增益Ks=40、时间常数Ts=0.0017;直流电机DC Machine的详细参数没有列出,斜坡函数Ramp设置为斜率Slope 100,000,在时间为Start time 0.8秒时开始。限幅Saturation设定上限值Upper为136、下限Lower为零。 电流反馈i-feed中Beta=0.05和Toi时间常数等于0.002;转速反馈n-feed的Alpha参数设置为0.00685,Ton的时间常数设为0.01。
  • 基于仿(包含.mdl文件)
    优质
    本项目构建了一个基于MATLAB/Simulink环境下的直流电机控制系统模型,采用转速和电流双闭环PID调节策略,旨在优化直流电动机的速度响应与稳定性。通过精确控制电流环确保电机高动态性能,而外部转速环则保证了系统的稳态精度及抗扰动能力。项目文件包括详细的.mdl仿真模型,便于深入研究与实践应用。 转速、电流双闭环控制直流调速系统的仿真包括了电流环仿真的mdl文件和转速环仿真的mdl文件。
  • 基于Matlab仿
    优质
    本研究基于MATLAB/Simulink平台,构建了直流电机转速和电流双闭环控制系统模型,并进行了详尽的仿真分析。 本段落介绍了一个基于MATLAB的转速电流双闭环直流调速系统的仿真项目,包括一个用于设置参数的M文件和一个Simulink仿真模型。该项目适用于运动控制系统的课程设计。