Advertisement

基于模拟技术的18位SAR ADC设计与实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究详细探讨了18位SAR ADC的设计与实现过程,采用先进的模拟技术优化其性能和精度,适用于高分辨率需求的应用场景。 本段落介绍了逐次逼近型模数转换器(SAR ADC)的结构,并分析了影响ADC性能的主要因素。设计了一种基于二进制加权电容阵列的数字校准算法,利用比较器自动失调校准技术实现了高性能SAR ADC的设计。仿真结果显示,在120ksps的采样率下精度可达18位。 随着高分辨率图像、视频处理及无线通信等领域对高速和高精度模数转换的需求日益增长,基于标准CMOS工艺的可嵌入式ADC变得越来越重要。对于迅速发展的片上系统集成技术而言,低功耗、小面积且易于嵌入的ADC核心模块已成为数字模拟混合信号IC设计的关键部分。随着技术的发展,对这类组件的要求也在不断提高。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 18SAR ADC
    优质
    本研究详细探讨了18位SAR ADC的设计与实现过程,采用先进的模拟技术优化其性能和精度,适用于高分辨率需求的应用场景。 本段落介绍了逐次逼近型模数转换器(SAR ADC)的结构,并分析了影响ADC性能的主要因素。设计了一种基于二进制加权电容阵列的数字校准算法,利用比较器自动失调校准技术实现了高性能SAR ADC的设计。仿真结果显示,在120ksps的采样率下精度可达18位。 随着高分辨率图像、视频处理及无线通信等领域对高速和高精度模数转换的需求日益增长,基于标准CMOS工艺的可嵌入式ADC变得越来越重要。对于迅速发展的片上系统集成技术而言,低功耗、小面积且易于嵌入的ADC核心模块已成为数字模拟混合信号IC设计的关键部分。随着技术的发展,对这类组件的要求也在不断提高。
  • 18SAR ADC
    优质
    本文详细探讨并实现了基于18位精度的逐次逼近型模数转换器(SAR ADC)的设计方案,包括架构选择、电路优化及测试验证等过程。 本段落介绍了逐次逼近型模数转换器(SAR ADC)的结构,并分析了影响ADC性能的主要因素。设计了一种基于二进制加权电容阵列的数字校准算法,同时采用比较器自动失调校准技术来实现高性能SAR ADC的设计。仿真结果显示,在120ksps 的采样率下精度可达18位。 随着高分辨率图像、视频处理及无线通信等领域的快速发展,对高速、高精度且基于标准CMOS工艺的可嵌入式ADC的需求日益增长。对于迅速发展的片上系统集成技术而言,低功耗和小面积的可嵌入ADC模块已成为数模混合信号IC设计中的关键要素。随着技术的进步,这种需求愈发显著。
  • 12高速SAR ADC
    优质
    本项目聚焦于设计和实现一款具备高性能的12位高速逐次逼近型模数转换器(SAR ADC),旨在满足现代电子系统对高精度快速数据采集的需求。 本段落探讨了12位高速SAR ADC的设计与实现目标为达到80 MSs的采样率。文章首先介绍了SAR ADC的优点及其应用场景,并深入研究并设计了高速SAR ADC中的主要功能模块,包括采样保持电路、数模转换器(DAC)、比较器和多相时钟电路等。 在采样保持电路的设计中,采用了栅压自举开关与下极板采样的技术方案以提升精度及降低噪声。对于数模转换器,则采用含冗余位的分段式结构来提高转换速度并减少高段电容阵列中的非线性误差。 比较器部分使用了动态预放大级再生型设计,从而在低功耗的同时提高了运行效率。针对多相时钟产生电路的问题,通过数字校准技术提升了时钟信号频率的稳定性,并解决了传统方法中易受工艺、电压和温度变化影响导致时钟频率不稳定的难题。 基于40纳米CMOS工艺进行核心版图设计后,芯片尺寸为540微米×70微米。在1.2伏电源供电条件下,模拟数字转换器的功耗仅为4.06毫瓦,并可实现80 MSs的最大采样率;其无杂散动态范围(SFDR)达到77.9分贝、信噪失真比(SNDR)为71.2分贝,优值(FOM)则达到了17.5飞焦耳/转换步骤,并且有效位数(ENOB)为11.5比特。 综上所述,根据设计和实验结果表明,所研发的高速SAR ADC已成功达到预期性能指标,在实际应用中具有广阔的前景。
  • DSP数字
    优质
    本项目基于DSP技术设计并实现了具有多种功能的数字模拟钟,结合了数字时钟的精准与时钟美观的艺术性。 本压缩包内包含我们DSP课程设计的全部资料,实现了以下功能:左半屏显示模拟钟,右半屏显示数字钟,并在下方红绿灯每1秒亮一位,实现循环彩灯效果。通过键盘可以修改日期、星期和时间。 具体操作方法如下: 1. 先按数字键选择要修改的数据位(234567分别对应月日周时分秒)。 2. 按+,-键来增加或减少所选数据,实现相应数值的更新。
  • 8SAR ADCMatlab正弦信号代码分析
    优质
    本文章探讨了基于Matlab的正弦信号分析方法在8位SAR ADC设计中的应用,通过详细代码解析和实验验证,为ADC的设计优化提供了新的视角。 在MATLAB环境中编写正弦信号代码,并设计一个8位逐次逼近寄存器(SAR)的工作流程:首先,在VHDL语言中创建简单的逐次逼近寄存器;然后,将该代码导入Cadence工具并生成符号文件。接着,根据此符号文件绘制出完整的8位SARADC原理图。使用正弦波作为输入信号来模拟整个电路,并从大约100毫秒的时间段内导出数据至CSV格式的文本段落件中。之后,在MATLAB环境中读取该CSV文件并绘制相应的波形图;进一步地,对这些原始输入数据执行快速傅里叶变换(FFT)以获取频谱信息;最后,为了减少频率响应中的波动现象,应用汉宁窗函数来处理上述得到的数据。 产出包括: 1. ADC的时序仿真结果。 2. 经过窗口修正后的FFT分析图。
  • 12流水线ADC采样保持电路
    优质
    本研究致力于设计一种应用于12位流水线ADC的高效采样保持电路,通过采用先进的模拟技术优化性能。 随着CMOS技术的不断发展,CMOS图像传感器因其高集成度、低功耗及成本效益,在超微型数码相机与手机等领域的图像采集应用中得到了广泛应用。流水线模数转换器(ADC)凭借其高速性、低能耗和中至高水平的精度特性,被广泛应用于图像传感器芯片级和列级AD转换环节。目前国际上14位10MHz级别的流水线ADC技术已经成熟,而国内多数成功流片的产品仍停留在10位级别,因此对更高精度(即超过10位)的流水线ADC的研究仍然至关重要。 在ADC系统中,采样保持电路作为前端的关键组件之一,其性能直接决定了整个ADC系统的效能。本段落提出了一种全差分电荷转移型结构设计的采样保持电路,旨在解决输入信号无关的电荷注入和时钟馈通问题,并采用底极板采样技术来消除与输入信号相关的这些影响。 此外,在该设计方案中还采用了栅压自举开关以减少由于开关非线性导致的误差并确保转换精度。同时利用折叠式增益增强运算放大器,进一步减少了因有限增益和不完全建立而产生的误差。 在5V电源电压下运行时,本设计采样保持电路能够在20MS/s(每秒百万次)的频率条件下工作,并且当输入信号达到奈奎斯特频带宽度的情况下,无杂散动态范围可以达到76dB,同时其采样精度为0.012%,满足了对12位ADC的要求。 该设计中的主要组成部分包括电荷转移型采样保持单元。电路通过两相非交叠时钟clk1和clk2控制来实现采样的启动与停止过程:在clk1上升沿期间,输入信号被存储到采样电容Cs中;当clk2处于高电平状态时,则进入保持阶段,在此过程中差分电荷会转移至反馈电容Cf上。底极板采样技术的应用则进一步减少了开关切换带来的影响,并确保了对较大共模范围内的输入信号处理能力。 在电路设计方面,选择合适的采样电容至关重要。过小的容量会导致热噪声增加从而降低信噪比(SNR),而过大则会增大功耗并减缓工作速度。对于12位ADC的设计而言,在考虑到噪声限制的情况下,最小推荐值为0.8pF,并且实际选取了1pF作为采样电容Cs的大小。 此外,采样开关设计同样重要,特别是在SW1处使用的线性度高的栅压自举开关能够显著提高电路在采样阶段的表现。而对于其他用于共模参考电压和端口短接功能的开关SW2和SW3,则采用了较为简单的NMOS与CMOS互补型结构。 综上所述,本段落介绍了一种结合全差分电荷转移、底极板采样技术、栅压自举电路及折叠式增益增强运算放大器等先进技术优化12位流水线ADC性能的设计方案。该设计不仅考虑了电路的实际效能表现,还兼顾到了功耗与速度之间的平衡性,在高精度图像处理中的应用前景广阔,并为后续类似产品的研发提供了重要参考价值。
  • LabVIEW万用表在
    优质
    本项目利用LabVIEW软件开发了一款多功能虚拟万用表,适用于多种电子测量需求。该虚拟仪器能够高效地进行电压、电流和电阻等参数的仿真测试,在教育及研发领域具有广阔的应用前景。 摘要:利用LabVIEW构建了虚拟万用表,并介绍了其设计与实现过程以及预留的实际元器件或信号测试的选择界面。 1. 引言 LabVIEW是由美国国家仪器公司(National Instruments, NI)推出的一种图形化编程语言,也是著名的虚拟仪器开发平台。它体现了“软件即仪器”的核心理念,在数据采集、仪器控制、测量分析与数据显示等多个应用领域提供了高性能和灵活性的解决方案。由于其功能类似于实际设备,并且LabVIEW程序易于更改设置和功能,因此在测试测量及自动化控制系统中得到了广泛应用。
  • SAR ADC中数字校准算法研究
    优质
    本研究探讨了SAR ADC中的数字校准算法,旨在提高其精度和线性度,减少制造成本与功耗,适用于高精度测量及控制系统。 在现有的工艺水平下,由于受到电容失配、系统失调以及噪声等因素的限制,采用电荷再分配结构的SAR ADC所能达到的最高精度大约为12位左右。因此,在设计高精度ADC时必须应用校准技术来提高性能。 通常有两种主要类型的校准方法:模拟校准技术和数字校准技术。模拟校准技术通过在模拟领域调整相关的物理量以恢复正常数值,或者利用激光修正芯片元件的方式进行精确度的提升;然而这种方法成本较高,并且容易受到封装过程中机械应力的影响。相比之下,数字校准技术则是在不直接关注模拟领域的具体物理量的情况下,在数字域内描述并纠正电路中的失配误差等影响因素。 SAR ADC的核心结构主要包括比较器、DAC(数模转换器)以及用于控制整个转换过程的SAR逻辑控制器。这些组件协同工作以实现高效的逐次逼近算法,从而完成从模拟信号到数字代码的有效转换任务。在高精度ADC设计中,采用适当的校准技术显得尤为重要,并且目前主流的做法是使用成本效益更高的数字校准方法来优化性能和稳定性。 1. SAR ADC内核原理 SAR ADC的基本组成单元包括比较器、DAC以及用于控制整个转换过程的SAR逻辑控制器。
  • SAR ADC系统级仿真
    优质
    SAR ADC的系统级模拟与仿真一文深入探讨了逐次逼近型模数转换器的设计方法及其实现过程中的关键挑战,通过全面的系统级建模仿真技术优化其性能和可靠性。 为了实现逐次逼近型模数转换器(SAR ADC),在MATLAB平台上使用Simulink工具建立其理想模型,该模型包含数模转换器(DAC)、比较器、译码器及寄存器模块等主要部分。理论分析时钟抖动、开关非线性、比较器失调和电容失配等因素对系统性能的影响,在此基础上加入这些非理想的因素,并进行MATLAB仿真。通过观察输出信号频谱的变化,总结出降低上述非理想因素影响的方法,为实际电路设计提供指导意义。
  • STM32ADC.rar
    优质
    本资源提供了一个基于STM32微控制器的ADC(模数转换器)模拟实现方案,包括硬件配置、代码示例及测试结果分析。 仿真与代码结合使用,我用的是Proteus 8.8版本,代码附有详细注释。希望可以跟大家多交流一下,感觉在STM32仿真的过程中会遇到很多问题。