Advertisement

12V POE供电电源转换参考电路.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本PDF文档提供了关于如何设计和应用12V POE供电电源转换电路的详细参考信息,包括原理图、材料清单及实际案例。 设计POE供电电源转换12V输出的参考原理图电路,在实际产品应用中有对部分器件选择及PCB电路设计中的关键环节进行了标注,可作为设计参考。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 12V POE.pdf
    优质
    本PDF文档提供了关于如何设计和应用12V POE供电电源转换电路的详细参考信息,包括原理图、材料清单及实际案例。 设计POE供电电源转换12V输出的参考原理图电路,在实际产品应用中有对部分器件选择及PCB电路设计中的关键环节进行了标注,可作为设计参考。
  • 优质
    本书提供了全面的电池电源转换电路设计指南,包含多种实用案例和详细的电路图解,适合电子工程师及爱好者学习参考。 可以在电池和外接电源之间进行切换的电路设计可供大家参考。
  • 12V从220V分析
    优质
    本篇文章详细解析了将220V交流电转换为12V直流电的过程与原理,包括变压器降压、整流滤波和稳压等环节的技术要点。 对于220V转12V的稳压电源来说,如果电流需求较大,则使用开关电源;若电流较小,则可以选用阻容降压电路。具体接法如下:首先将220V电压通过一个680nF左右且耐压400V以上的电容器(并联一个大约1M欧姆的泄放电阻)进行降压处理,然后经过桥式整流器(例如使用型号为1N4007的二极管),再经由电容滤波后,在输出端连接一个小阻值限流电阻和一个12V稳压管即可。
  • 12V与24V
    优质
    本设计探讨了从12伏特电源系统向24伏特系统高效转换的技术方案,旨在实现不同电压需求间的灵活切换。 24V转12V的转换电路原理图是用Altium绘制的。
  • 5V从12V
    优质
    本设计提供了一种将5V电压提升至12V的电路方案,包含详细的电路图及元器件说明,适用于电子设备电源转换需求。 该原理图使用2576芯片实现12V到5V的电压转换电路。
  • 12V自60V
    优质
    本项目提供了一种将60V电压降至12V的有效电路设计方案,包括详细的电路图和元件选择指南。适合需要降压电源供应的应用场景使用。 越来越多的消费者在电动车配件出现问题时选择自己排查故障并更换零件。为了帮助大家更好地了解相关知识,我将接线图的说明一并提供在此。关于电动车报警器的接线方法,从原理上来说其实非常简单。
  • 从正12V到负12V
    优质
    本项目介绍如何设计并实现一个简单的电路,能够将正12伏特电源转换为负12伏特输出,适用于电子设备中需要双极性供电的情况。 本电路使用TPS5340降压芯片。
  • 12V稳压从220V解析
    优质
    本文章详细解析了将220V交流电转换为稳定的12V直流电的电路设计与工作原理,包括常用电子元件的选择和应用。适合初学者了解电源变换的基础知识。 本段落介绍了三种将220V转换为12V的电源电路:220V转12V开关电源电路图、220V转12V稳压电源电路图以及通用的220V转12V电路图。其中,虽然开关电源电路类型多样,但其工作原理基本一致。常见的电子产品如手机充电器、电磁炉和彩电等都使用了这种类型的电源。而要确保稳定输出,在设计稳压电源时需要调整C3与R5的参数值。
  • 12V至-12V(基于555芯片)
    优质
    本设计介绍一种利用555定时器构建的简单电路,实现从12伏特直流电到负12伏特的电压逆相转换,适用于小型电子设备。 使用555芯片制作12V转-12V线路时,建议输入电压超过14V以确保输出更稳定。
  • 以太网POEEMC设计的标准.pdf
    优质
    本PDF文档深入探讨了以太网POE供电技术中的电磁兼容性(EMC)设计原则与电路标准化问题,为工程师提供实用的设计指导和解决方案。 ### 以太网POE供电EMC设计标准电路解析 #### 一、概述 随着网络技术的发展,以太网供电(Power over Ethernet, POE)技术因其便捷性、灵活性及可靠性等特点,在各类网络设备中得到了广泛应用。然而,由于POE设备在传输数据的同时还需要通过以太网线缆提供电力,这使得其面临着电磁兼容(Electromagnetic Compatibility, EMC)方面的一系列挑战。本段落将基于相关文档内容,详细介绍该标准电路的设计要点及其EMC方面的考量。 #### 二、EMC设计目标 EMC设计的主要目标在于确保电子设备能够在预定的环境中正常工作,并且不会对其他设备造成干扰。对于以太网POE供电设备而言,其EMC设计需满足以下标准: 1. **浪涌测试**:符合IEC61000-4-5标准,通常要求达到第4级。 2. **静电放电(ESD)**:应达到IEC61000-4-2标准的第4级要求,即接触放电8kV和空气放电15kV。 3. **辐射与传导抑制**:采用合适的设计策略来减少电磁辐射和传导干扰,例如使用滤波器L2。 #### 三、关键组件解析 1. **保护元件** - **MOV (金属氧化物压敏电阻)**:如型号为MOV14D820V的元件用于过电压保护,可以有效吸收瞬态高压并防止后端电路受到损害。 - **TVS (瞬态电压抑制二极管)**:例如BV03C类型的TVS二极管能够迅速响应电压变化,限制电压幅度以保护电路不受浪涌冲击。 2. **滤波器** - **L2 (共模扼流圈)**:SF0905251YLB型的共模扼流圈用于抑制高频共模干扰,有助于提高设备抗干扰能力。 - **陶瓷电容**:例如使用100nF和1000pF的电容器来滤除电源线上的噪声。 3. **整流与稳压** - **整流桥**:U2作为整流桥负责将交流输入转换为直流,是POE供电系统的核心组成部分之一。 - **DC-DC转换器**:虽然文档中未明确提及,在实际应用中通常会采用此设备来调节输出电压以确保稳定。 4. **连接器与接口** - **J1 (以太网接口)**:MX1+、MX1-等引脚代表了信号线和地线,用于连接外部网络设备。 #### 四、电路设计原理 本设计围绕POE供电系统的输入保护、滤波以及整流等几个关键环节展开: 1. **输入保护**:采用MOV和TVS元件进行浪涌及ESD防护。 2. **滤波**:通过L2等滤波器减少传导与辐射干扰。 3. **整流与稳压**:整流桥U2负责将交流电转换为直流,后续可能加入DC-DC转换器以进一步调节输出电压。 #### 五、设计注意事项 1. **布局与布线**:合理的布局和布线对减少电磁干扰至关重要。应尽量减小信号回路面积,并确保敏感线路远离强干扰源。 2. **接地设计**:良好的接地可以有效降低共模干扰,提高系统的稳定性。需采用低阻抗路径并避免形成地环路。 3. **元件选择**:合理选型保护元件和滤波器对于实现EMC目标非常重要。 #### 六、总结 以太网POE供电的EMC设计标准电路旨在解决网络设备在复杂电磁环境下的正常运行问题。通过合理的配置保护元件、滤波器以及其他关键组件,可以有效提升设备的EMC性能。实际设计过程中还需注意布局、布线以及接地等方面的具体实施细节,确保最终产品的可靠性和稳定性。