Advertisement

基于特征聚类的特征选择方法研究 (2015年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本论文探讨了基于特征聚类技术的特征选择方法,旨在优化机器学习模型性能,减少维度并提高计算效率。通过深入分析各类算法的优劣,提出了一种新颖有效的解决方案,为后续的研究提供了理论依据和实践指导。 特征选择是数据挖掘与机器学习领域常用的一种预处理技术。在无监督学习环境中,提出了一种基于特征平均相关度的度量方法,并在此基础上发展出了名为FSFC的特征选择算法。该算法通过聚类分析,在不同子空间中寻找簇群,从而将具有较强依赖关系(存在冗余性)的特征归入同一簇内;随后从每个簇内部挑选出代表性较强的子集来共同构建最终的特征子集,以实现去除无关和冗余特征的目标。实验结果表明,在UCI数据集中应用FSFC方法能够取得与多种经典有监督学习算法相媲美的特征简化效果及分类性能。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • (2015)
    优质
    本论文探讨了基于特征聚类技术的特征选择方法,旨在优化机器学习模型性能,减少维度并提高计算效率。通过深入分析各类算法的优劣,提出了一种新颖有效的解决方案,为后续的研究提供了理论依据和实践指导。 特征选择是数据挖掘与机器学习领域常用的一种预处理技术。在无监督学习环境中,提出了一种基于特征平均相关度的度量方法,并在此基础上发展出了名为FSFC的特征选择算法。该算法通过聚类分析,在不同子空间中寻找簇群,从而将具有较强依赖关系(存在冗余性)的特征归入同一簇内;随后从每个簇内部挑选出代表性较强的子集来共同构建最终的特征子集,以实现去除无关和冗余特征的目标。实验结果表明,在UCI数据集中应用FSFC方法能够取得与多种经典有监督学习算法相媲美的特征简化效果及分类性能。
  • Relief_Relief算_MATLAB下_
    优质
    本段介绍Relief算法在MATLAB环境中的实现及其应用,重点探讨如何通过该算法进行有效的特征选择,提升机器学习模型性能。 Relief特征提取算法及对应的Matlab代码,程序包含详细注释。
  • RELIEF
    优质
    本研究提出了一种改进的RELIEF算法,通过优化特征权重计算过程来提升机器学习模型性能,适用于高维数据集中的特征选择。 该程序用于特征选择,详细说明了其工作原理,思路简单易懂,方法较为简便,适合初学者使用。
  • mRMR
    优质
    mRMR(Minimum Redundancy Maximum Relevance)是一种高效的特征选择算法,旨在从大量候选特征中挑选出最能代表类别的最小特征子集。通过最大化目标属性与所选特征间的相关性同时最小化这些特征之间的冗余度,以提高分类器性能和减少计算复杂性。 这段文字描述的代码实现了最小冗余最大相关性(mRMR)算法,并包含了数据和案例,因此很容易运行通过。
  • 论:
    优质
    简介:特征选择是机器学习与数据挖掘中的关键技术,旨在从大量原始特征中挑选出最有利于模型构建的一组特征。通过减少维度、提升预测性能及增强模型可解释性来优化算法效率。 三种常用的特征选择算法包括卡方特征选择(CHI)、互信息特征选择(MI)和信息增益特征选择(IG)。
  • 相关性下论文.pdf
    优质
    本论文探讨了在机器学习中基于特征相关性的特征选择方法,旨在提高模型性能和可解释性。通过分析不同特征间的关联性来优化特征集合,减少冗余和噪声的影响。 不平衡数据集分类是机器学习研究中的一个重要课题。近年来,研究人员提出了多种理论与算法来改进传统分类技术在处理这类问题上的表现。其中一种关键的方法是在神经网络中通过阈值判定标准确定适当的阈值。然而,现有的阈值判定方法存在一些不足之处,例如无法同时优化少数类和多数类的分类精度或过分关注多数类的表现。 为了解决这些问题,我们提出了一种新的阈值判定标准,在这种新准则下可以实现对两类样本(即少数类与多数类)的最佳分类效果,并且不受类别比例的影响。通过结合神经网络和遗传算法训练出更有效的分类器,并将其作为选择阈值的依据以及评估模型性能的标准,该方法能够取得良好的结果。
  • Salp Swarm算:SSA在任务中应用-MATLAB实现
    优质
    本研究采用Salp Swarm Algorithm (SSA)探索特征选择问题,并通过MATLAB实现其优化过程,旨在提升机器学习模型性能。 该工具箱提供了Salp Swarm算法(SSA)方法的“主”脚本,并通过使用基准数据集解决特征选择问题的例子来展示如何应用SSA。
  • MNMI.zip_样本_近邻互信息邻域
    优质
    本研究提出了一种基于近邻互信息的邻域特征选择方法(MNMI),通过优化样本和特征的选择,提升机器学习模型性能。 基于最近邻互信息特征选择算法,对每个样本取其最近邻作为邻域。
  • 不同
    优质
    不同的特征选择方法是用于数据分析和机器学习中挑选最优预测变量的技术。这些策略有助于简化模型、提升性能并增强可解释性。 特征选择是机器学习与数据挖掘中的重要环节,旨在从原始数据集中挑选出最相关且最有用的特征,以提升模型性能及解释性。以下将对多种特征选择方法进行详细介绍。 1. **MIFS (Mutual Information based Feature Selection)**:基于互信息的特征选择方法(MIFS)考虑了目标变量与各特征之间的关系以及这些特征间的相互依赖性。它旨在寻找那些既高度相关于目标变量又与其他特征低度相关的特性,从而降低过拟合的风险。 2. **mRMR (Minimum Redundancy Maximum Relevance)**:最小冗余最大相关(mRMR)算法的目标是选择与目标变量具有高关联性的特征,并尽量减少这些特征间的重复性。这种方法在处理大规模数据集时特别有效,因为它能够平衡特性之间的相互依赖性和独立性。 3. **CMIM (Conditional Mutual Information Maximization)**:条件互信息最大化方法(CMIM),通过评估给定其他特征条件下目标变量与特定特征的关联程度来寻找隐藏的相关关系。 4. **JMI (Joint Mutual Information)**:联合互信息是一种基于多属性决策的方法,考虑了各特征与目标变量之间的相互依赖性以及这些特征间的交互作用。其目的是发现具有高相关性和低冗余度的特性组合。 5. **DISR (Discrete Interaction Search with Relief)**:离散交互搜索结合Relief算法(DISR),通过计算权重来评估哪些特质能够有效区分不同的数据实例,并考虑了特征之间的相互影响。 6. **CIFE (Conditional Independence Feature Evaluation)**:条件独立性特征评价方法基于贝叶斯网络的测试,用于确定各特性对目标变量的独立贡献程度,从而去除冗余信息。 7. **ICAP (Iterative Conditional Mutual Information with Anti-correlation Promotion)**:迭代式条件互信息与抗相关促进(ICAP)通过不断更新特征子集来优化最终选择结果,并且鼓励选出具有负向关联性的特性组合以提高模型性能。 8. **CondRed (Conditional Redundancy)**:条件冗余度评估方法考虑了在已知其他特性的条件下,某一特定特质对目标变量的贡献程度是否重复,从而减少不必要的特征数量。 9. **BetaGamma (β-Gamma Statistics)**:β-γ统计量通过两种不同方式来衡量特性间的冗余性和与目标变量的相关性。其中β统计用来评估特征间的关系强度;而γ则用于评价每个特质对最终输出的重要性程度。 10. **CMI (Conditional Mutual Information)**:条件互信息是衡量两个随机变量在给定其他变量条件下相互依赖性的度量,它是基本的互信息概念的一种扩展形式。 FEAST可能是提供上述所有特征选择策略实现的一个框架或工具。实际应用中,选择哪种方法取决于问题的具体性质、数据规模以及对模型性能的需求等因素。理解并灵活运用这些技术对于提升机器学习模型的表现至关重要。
  • SVM-RFE支持多
    优质
    本研究提出了一种改进的SVM-RFE算法,专门用于支持多类分类任务中的特征选择,有效提升了模型性能和泛化能力。 该代码实现了一对一的SVMRFE算法,主要用于特征选择。这是SVMRFE的一个改进版本,具有更快的速度。