Advertisement

自制Arduino MPPT充电控制器-电路设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目详细介绍了一个基于Arduino平台的MPPT(最大功率点跟踪)太阳能充电控制器的设计与实现。通过优化电池充电效率,有效提升能源利用率。 在本教程中,我将向您展示如何制作基于Arduino的MPPT充电控制器。什么是Mppt(最大功率点跟踪)?我们使用MPPT算法来从光伏模块中提取最大可用功率,在某些条件下尤为有效。它是一种最受欢迎的技术手段,帮助人们以更高效的方式利用太阳能等可再生能源。如果我们希望减少碳排放量并走向绿色能源,则必须转向清洁能源,如太阳、水力和风能等;否则我们将直接面对全球变暖的挑战。 每个国家都需要迈向可持续发展的道路,特别是中国作为二氧化碳的主要贡献国(生产了63%的二氧化碳),更需要采取行动来推动这一进程。那么MPPT是如何工作的呢?为什么150W太阳能电池板不等于实际输出功率为150瓦? 例如:如果你购买了一块新太阳能电池板,它声称可以提供7安培电流,在充电时设定电压为12伏,则计算得出的功率是84瓦(P = V * I)。也就是说你损失了66W的能量。这是因为太阳能产生的电流和电池所需的电压不匹配导致的结果。 然而通过使用MPPT算法后,我们可以获得最大可用功率。当电池设置在12V时,如果输出为12V,则计算得出的功率是:p = 12 * 12 = 144W。这样一来每个人都会感到满意了。 项目规格如下: - LED指示灯显示低、中和高充电状态 - LCD(20x4字符)显示屏用于展示电源,电流,电压等信息 - 防雷/过压保护功能 - 避免逆流功率的功能 - 过载及短路保护措施 - 通过WiFi记录数据 - 可以通过USB接口为手机、平板电脑或其他小型设备充电 电气规格如下: 1. 标称电压:12V 2. 最大输入电流:5A 3. 支持最大负载电流:10A 4. 输入电压范围(太阳能电池板): 从12至24伏 5. 太阳能电池板功率为50瓦 基于Arduino的MPPT算法充电控制器将遵循以上规格进行设计和制造。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Arduino MPPT-
    优质
    本项目详细介绍了一个基于Arduino平台的MPPT(最大功率点跟踪)太阳能充电控制器的设计与实现。通过优化电池充电效率,有效提升能源利用率。 在本教程中,我将向您展示如何制作基于Arduino的MPPT充电控制器。什么是Mppt(最大功率点跟踪)?我们使用MPPT算法来从光伏模块中提取最大可用功率,在某些条件下尤为有效。它是一种最受欢迎的技术手段,帮助人们以更高效的方式利用太阳能等可再生能源。如果我们希望减少碳排放量并走向绿色能源,则必须转向清洁能源,如太阳、水力和风能等;否则我们将直接面对全球变暖的挑战。 每个国家都需要迈向可持续发展的道路,特别是中国作为二氧化碳的主要贡献国(生产了63%的二氧化碳),更需要采取行动来推动这一进程。那么MPPT是如何工作的呢?为什么150W太阳能电池板不等于实际输出功率为150瓦? 例如:如果你购买了一块新太阳能电池板,它声称可以提供7安培电流,在充电时设定电压为12伏,则计算得出的功率是84瓦(P = V * I)。也就是说你损失了66W的能量。这是因为太阳能产生的电流和电池所需的电压不匹配导致的结果。 然而通过使用MPPT算法后,我们可以获得最大可用功率。当电池设置在12V时,如果输出为12V,则计算得出的功率是:p = 12 * 12 = 144W。这样一来每个人都会感到满意了。 项目规格如下: - LED指示灯显示低、中和高充电状态 - LCD(20x4字符)显示屏用于展示电源,电流,电压等信息 - 防雷/过压保护功能 - 避免逆流功率的功能 - 过载及短路保护措施 - 通过WiFi记录数据 - 可以通过USB接口为手机、平板电脑或其他小型设备充电 电气规格如下: 1. 标称电压:12V 2. 最大输入电流:5A 3. 支持最大负载电流:10A 4. 输入电压范围(太阳能电池板): 从12至24伏 5. 太阳能电池板功率为50瓦 基于Arduino的MPPT算法充电控制器将遵循以上规格进行设计和制造。
  • Arduino太阳能原理图
    优质
    本资源提供Arduino太阳能充电控制器的设计原理图,详述了如何利用Arduino平台实现高效的太阳能充电管理,包括电路布局、元件选择及工作原理。 由于提供的文件内容存在大量的OCR扫描错误和非结构化文字,因此无法直接解读完整的知识点。不过,从给出的信息中可以猜测,文件标题表明其内容是关于如何使用Arduino制作太阳能充电控制器的原理图。下面将从理论上探讨Arduino太阳能充电控制器的相关知识点。 在讨论基于Arduino的太阳能充电控制器原理图之前,我们首先要了解太阳能充电控制器的基本功能。太阳能充电控制器是太阳能发电系统中不可或缺的部分,它的主要作用是管理和控制太阳能面板产生的电能,确保安全和高效地为电池充电。 一个太阳能充电控制器通常包含以下几个核心功能: 1. 最大功率点跟踪(MPPT):使太阳能板始终工作在最佳效率状态下,从而提高整个系统的发电效率。 2. 充电和放电管理:控制太阳能板的电能流向电池或负载,以及从电池流向负载。 3. 过充和过放保护:防止电池过充和过放,延长电池的使用寿命,并保护电池不受到损害。 4. 温度补偿:根据电池温度调整充电电压,提高充电精度。 5. 短路和逆流保护:防止电路发生短路和电流逆向流动。 6. 状态显示:通过指示灯或LCD显示当前的工作状态,方便用户监控系统运行。 接下来,我们要谈到Arduino平台。Arduino是一款易于使用的开源硬件平台,它结合了简单的硬件和软件接口,使用户可以方便地进行硬件编程。Arduino可以用来构建各种各样的原型项目,包括本例中的太阳能充电控制器。 利用Arduino作为控制核心,可以实现以下几点: - 使用模拟输入口监测太阳能电池板和电池的电压及电流。 - 通过数字输入输出口控制继电器或MOSFET开关,从而对电流的流向进行控制。 - 利用内置的PWM(脉冲宽度调制)功能来调节充电电流和电压,以实现精确的充放电控制。 - 通过编程实现智能算法,比如实现MPPT功能。 在原理图中,我们可能会看到以下常见的电子元件: - 二极管:防止电流逆向流动。 - MOSFET:用于开关电路,控制充放电。 - 模拟和数字传感器:测量电压和电流,检测系统状态。 - 电容和电感:用于滤波,确保电路稳定运行。 - 稳压器:为Arduino板提供稳定的电源。 - LCD显示屏或LED指示灯:显示系统状态和关键数据。 由于文档内容存在扫描错误,我们无法直接从这些内容中提取准确的原理图描述。不过,根据Arduino太阳能充电控制器的一般知识,原理图应该包括输入部分(太阳能电池板),输出部分(电池和负载),以及中间的控制部分(Arduino控制器和其他电子元件)。 实际的原理图会展示电子元件如何相互连接,以及它们与Arduino之间的关系。图中的每个元件通常都标有其型号、电容量、电阻值等参数,对于电路的搭建和调试至关重要。 在原理图的基础上,还需要配套的Arduino代码来控制电子元件的工作。代码需要能够读取传感器数据,并根据算法执行相应的控制命令,如开启或关闭继电器,调节PWM波形等。 制作一个功能完整的Arduino太阳能充电控制器还需要综合考虑电子元件的选择、电路的稳定性和安全性以及编程的正确性。只有这些因素都得到妥善处理,才能确保充电控制器的可靠性和有效性。
  • 基于Arduino的MIDI
    优质
    本项目介绍了一种基于Arduino平台的MIDI音乐控制器的设计与实现。通过简单电路搭建和编程,用户可以自定义控制界面,轻松操控音乐软件中的多种参数。 这次的新教程将教你如何构建一个基于Arduino开发板的MIDI控制器乐器。所需硬件组件包括:Seeed Arduino主板一块、SparkFun微型街机套件一套、通用旋转电位器一只以及RobotGeek滑块一个。 在软件方面,你需要安装和配置ABLETON、Arduino IDE、loopmidi及Hairless midi serial等应用程序和服务来支持你的项目开发。此外,在制作过程中你还需要使用激光切割机和烙铁等手动工具与制造设备进行硬件组装工作。 为了确保教程能够帮助你在构建自己的MIDI控制器时更加得心应手,我们将提供所有必要的文件,并且已经从JLCPCB获得了定制的PCB板以改进项目外观。我们还准备了充足的文档资料及代码供你参考使用。整个项目的完成仅耗时三天:前两天用于采购所需的所有硬件组件并进行组装工作;第三天则专注于编写适合该项目需求的相关软件代码。 所有相关文件都已作为附件分享出来,便于大家下载和查阅。
  • Arduino PWM太阳能(V2.02)-
    优质
    本项目介绍一款基于Arduino平台的PWM太阳能控制器(V2.02版本)的设计方案,包括硬件连接、软件编程和系统调试等内容。 一种设备用于控制进入电池的太阳能电池板产生的电能。如果您计划安装离网太阳能系统,则需要一个太阳能充电控制器。它被放置在太阳能电池板与电池组之间,以调节从太阳能电池板到电池的电力输入,并确保对电池进行正确的充电同时防止过度充电。 当前PV电力系统中通常使用两种类型的充电控制器:脉宽调制(PWM)和最大功率点跟踪(MPPT)。本教程将重点介绍PWM太阳能控制器。其规范包括: 1. 充电控制器及仪表 2. 自动选择电池电压 (6V/12V) 3. 根据电池电压设定的自动PWM充电算法 4. LED显示充电状态和负载状态 5. 用于显示电压、电流、功率、能量以及温度信息的LCD显示屏(20x4字符) 6. 防雷保护 7. 反向电流防护措施 8. 短路及过载保护功能 9. 充电时考虑电池温度进行补偿 10. USB端口用于为小工具充电 该控制器的工作原理基于Arduino Nano板。通过使用分压器电路,Arduino可以感应到太阳能电池板和电池的电压,并根据这些值来决定如何对电池进行充电以及控制负载。 整个设计包括: - 配电电路:MP2307降压转换器将电池电源降至5V。 - 输入传感器:两个分压器用于测量太阳能面板与电池的电压,另外通过ACS712模块感测电流。温度由DS18B20感应。 - 控制电路:MOSFET Q1和Q2分别负责向电池发送充电脉冲以及驱动负载。 - 保护措施:包括TVS二极管、肖特基二极管及保险丝,以防止过压、反向电流及过流情况的发生。 - LED指示器用于显示太阳能面板状态、电池状况及负载连接的状态 - LCD显示屏提供各种参数的读数 - USB端口供小工具充电使用 - 重置按钮可重启Arduino板
  • MPPT功能的太阳能-
    优质
    本项目专注于开发一种集成最大功率点跟踪(MPPT)功能的高效太阳能控制器电路。该设计旨在优化光伏系统的能源利用率,并提升在各种光照条件下的性能表现。 这款太阳能充电控制器具备高达20A的额定电流及60V输入电压,并适用于AGM、锂离子以及LiFePo4电池类型。它采用专用STM32F334C8T6微处理器控制,内置高分辨率PWM控制器(HRPWM)。此设备既可以作为调试工具用于研究最大功率点追踪算法,也可以直接应用于容量为500W以下的独立太阳能发电系统中。 其主要特点包括: - 输入电压范围:15V至60V - 输出电压选择:12/24V 或 2-6S锂离子电池配置 - 最大输出电流可达20A,频率高达100kHz,效率达到96% - 支持AGM、GEL、锂离子及LiFePo4类型电池 - 接口包括CAN和Wi-Fi连接选项 - 设备尺寸为:136 x 70 x 26毫米 在开发过程中,特别注重使用高品质组件以确保硬件的可靠性,并实现了高效的最大功率点追踪算法。此外,在控制器中未采用电解电容器而是选择了固态聚合物电容来延长使用寿命,并优化了设备的热管理设计,从而保证至少10年的长期运行。 该充电控制器是在厚度为1.6毫米、铜层厚35微米(约等于1盎司)的四层FR-4材料制成的印刷电路板上制造而成。如果更改PCB板材厚度,则需要相应调整设备外壳尺寸以适应新设计要求。
  • USB供手机
    优质
    本项目提供了一种创新的USB供电手机电池充电解决方案,包含详细的电路设计和制作步骤。通过简单的电子元件组合,可以实现高效便捷的手机电池充电功能。适合DIY爱好者探索实践。 本段落分享了一个自制的USB接口供电手机电池充电器电路图。
  • 动化
    优质
    本项目致力于研发一种高效的路灯自动化控制系统,通过集成先进的传感器技术和智能算法,实现对城市照明系统的优化管理,旨在降低能源消耗并延长灯具寿命。 光控路灯电路由电源电路与光控电路组成。 **电源电路**: 包括变压器T、整流二极管VDl-VD4以及滤波电容器C。交流220V电压通过T降压,再经过VDl-VD4进行整流处理,并且使用C进行进一步的滤波后,为光控电路提供稳定的+12V工作电源。 **光控电路**: 光敏电阻器RG、电阻R1和R2、可调阻值电阻RP、电子开关集成电路IC、继电器K以及二极管VD5组成。在白天时,RG受光线照射呈低阻状态,使得IC的输入端(脚2)与输出端(脚4)均为高电平,此时内部的电子开关处于关闭状态,继电器不吸合,路灯EL熄灭;夜晚无光时,RG呈现高阻态,IC的输入端变为低电平,导致其内部电子开关联接导通,使EL点亮。通过调节RP可以改变电路对光线变化的敏感度。 元件选择建议: - R1和R2应选用1/4W金属膜电阻器或碳膜电阻器。 - RP推荐使用实心可调阻值电阻。 - RG宜采用RG45系列光敏电阻器。 - C需要耐压为16V铝电解电容器,VDl至VD5则建议选择型号为IN4007的硅整流二极管。 - IC应选用TWH8751型电子开关集成电路。 - K推荐使用JZX-22F型(触点电流负载能力达IOA)12V直流继电器,其两组常开触头可并联运用。 - T建议采用3到5W、二次电压为12V的电源变压器。
  • Arduino动摄像头滑轨-
    优质
    本项目介绍了一个基于Arduino的电动摄像头滑轨控制系统的设计与实现,包括硬件搭建和软件编程。通过精确控制电机运动,使摄像头能够平稳地沿轨道移动,适用于摄影爱好者及小型工作室。 对于喜欢拍摄随机爱好者视频的人来说,购买电动相机滑块可能成本较高。因此,我决定自己动手制作一个。在本教程中,我们将逐步完成您自己的蓝牙控制的电动照相滑块。今天,我们将构建一个可由定制Android移动应用程序通过蓝牙无线操控的摄像头滑轨系统。使用“MIT App Inventor”工具开发的应用程序可以让你调节很多参数,例如滑轨的速度、行进距离以及加速度等。该应用非常灵活,在其内部你可以设置你所使用的相机轨道的实际长度,这意味着你可以自由构建长达10米或更长的任意长度的实际摄像头滑块而无需担心应用程序是否兼容。 我们选择了NEMA 17步进电机作为驱动器来控制摄像机滑轨移动的具体步骤。为了通过Arduino开发板精确地操控这些步进电机,我们需要一个能够将从Arduino接收的信息转换成适合步进电机理解的语言的装置——这里使用的是Pololu A4988 步进电机驱动器。A4988 驱动器提供了五种不同的微步分辨率(最小可达1/16步),从而保证了最大的运动精度和平滑度。
  • 动增益
    优质
    本项目专注于研究和开发高性能的自动增益控制(AGC)电路。通过优化算法与硬件设计,实现信号处理中动态范围压缩及噪声抑制功能,以提升电子设备通信质量。 本段落探讨了电子自动增益控制的基本问题,并对自动增益系统进行了讲解。
  • PV_buck_MPPT_光伏板、BuckMPPT_mppt_
    优质
    本项目探讨了光伏板通过Buck电路与最大功率点跟踪(MPPT)控制器的应用,实现高效能量采集及转换。 使用Buck变换器实现最大功率点跟踪(MPPT)以给电池充电。