Advertisement

基于电压外环电流内环双闭环控制的buck-boost双向DC-DC变换器仿真研究(输入为直流电压源,输出连接至蓄电池)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了采用电压外环和电流内环双闭环控制策略下的Buck-Boost双向DC-DC变换器,在输入为直流电压源且输出负载为电池的条件下进行仿真分析。 非隔离双向DC-DC变换器(buck-boost变换器)采用电压外环电流内环的双闭环控制方式,在正向运行时实现直流电压源给电池恒流恒压充电,反向运行时则通过电池放电来维持直流侧电压稳定。在MATLAB Simulink中建立仿真模型,输入端为直流电压源,输出端连接蓄电池模型。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • buck-boostDC-DC仿
    优质
    本文探讨了采用电压外环和电流内环双闭环控制策略下的Buck-Boost双向DC-DC变换器,在输入为直流电压源且输出负载为电池的条件下进行仿真分析。 非隔离双向DC-DC变换器(buck-boost变换器)采用电压外环电流内环的双闭环控制方式,在正向运行时实现直流电压源给电池恒流恒压充电,反向运行时则通过电池放电来维持直流侧电压稳定。在MATLAB Simulink中建立仿真模型,输入端为直流电压源,输出端连接蓄电池模型。
  • 三相PWM整仿,以系统仿
    优质
    本研究探讨了三相PWM整流器在电压与电流双重闭环控制下的性能优化,并以外部直流电压作为主要调控目标进行系统仿真实验。 三相PWM整流器闭环仿真采用电压电流双闭环控制策略,其中输出直流电压作为外环模型的一部分。该模型包括主电路、坐标变换、电压电流双环PI控制器以及SVPWM(空间矢量脉宽调制)控制和PWM发生器的MATLAB/Simulink实现。具体来说,在三相六开关七段式的SVPWM仿真中,交-直-交变压变频器中的逆变部分通常采用三相桥式电路结构来提供所需的三相交流变频电源。SVPWM控制方法依据电机负载需求生成圆形旋转磁场以驱动电机旋转,并通过合成电压空间矢量产生IGBT触发信号。与SPWM方式相比,该技术的直流电压利用率提高了约15%。
  • 【Simulink仿Buck
    优质
    本项目利用MATLAB Simulink搭建了Buck电路的双闭环控制系统模型,分别设计了内环电流和外环电压控制器,实现了高效稳定的电力转换。 在Simulink中仿真的双闭环buck电路中外环控制输出电压,内环控制输出电流。参数已经调好了。
  • DC/DC能量
    优质
    本研究探讨了在双闭环DC/DC变换器控制系统中实现电池双向能量流动的方法和技术,分析其效率与稳定性。 在Simulink仿真中使用双向Buck/Boost变换器实现电池能量的双向流动。
  • STM32三相型SVPWM整仿:采用PID),达600V
    优质
    本研究利用STM32平台探讨了三相电压型SVPWM整流器,通过实施双闭环PID控制系统(包括电压外部回路和电流内部回路)实现了高达600伏的稳定输出电压。 在现代电力电子技术领域,三相电压型SVPWM(空间矢量脉宽调制)整流器已成为关键组件之一,在高电压大功率应用中具有广泛应用前景。STM32是一种广泛使用的32位微控制器,具备丰富的外设接口和强大的处理性能,非常适合实现复杂的控制算法。 本段落将详细介绍基于STM32控制器的三相电压型SVPWM整流器仿真设计,并采用双闭环PID控制策略来确保输出电压稳定在600V或800V。此外,该系统还具备单位功率因数运行能力及变负载仿真实验功能。 空间矢量脉宽调制技术是三相电压型SVPWM整流器的核心所在,通过调整脉冲宽度和优化开关频率来减少谐波、提高效率并加快响应速度。在本次仿真中,采用精确的SVPWM控制策略对输出电压与电流进行精细调节。 双闭环PID控制系统是此次仿真实验的关键部分,在该系统中,电压外环负责维持稳定的输出电压,而电流内环则通过调整PWM信号来保证电压环的精度和稳定性。这种分层控制方式不仅提高了系统的动态性能,还确保了在负载变化时仍能保持良好的稳定性和响应能力。 仿真设计过程中,STM32控制器利用其丰富的接口与SVPWM整流电路连接,并通过内部PID算法调节PWM占空比以实现实时控制。此外,系统支持用户自定义输出电压至800V,满足不同应用场景的需求。 报告还详细介绍了三相全控单极性桥式整流电路的设计及仿真过程。该设计采用六个可控硅作为开关器件,并通过软件精确调控其通断状态来完成整流功能。与传统二极管整流相比,这种可控硅整流方案具有更好的可调节性和更佳的电力参数控制能力。 在仿真实验中,我们深入分析并验证了电压外环和电流内环PID参数的有效性,并通过实验数据展示了双闭环控制系统的优势。此外,还探讨了随着技术进步如何优化三相电压型SVPWM整流器的设计以适应新的应用需求。 本段落包含多个仿真波形图来直观展示系统在不同条件下的性能表现,帮助理解系统的动态响应特性和稳定状态特性。通过这些研究成果,我们为开发高性能电力电子设备提供了重要的参考依据和实践经验。
  • BuckPWM仿模型,涵盖开
    优质
    本研究构建了三电平Buck变换器的PWM控制仿真模型,详细分析了开环和基于输出电压以及电压电流双闭环的反馈控制系统特性。 三电平Buck变换器仿真模型采用PWM控制方式,包括开环控制和闭环控制两种模式。其中闭环控制又分为输出电压闭环和输出电压电流双闭环两种方式。该模型既包含单向结构也涵盖双向结构,请在联系时注明所需的具体结构类型。此外,相关运行环境文件适用于MATLAB Simulink及PLECS等平台。
  • BuckPI
    优质
    本研究探讨了一种基于双闭环控制策略的Buck变换器设计,特别关注于采用PI控制器实现精确的电流和电压调节。通过优化内外环参数,该方法有效提升了系统的动态响应与稳态精度,适用于广泛电源管理应用中高效、稳定的电力转换需求。 Buck双闭环控制包括内环电流环和外环电压环,构成一个完整的双闭环控制仿真模型。
  • Buck-Boost 设计
    优质
    Buck-Boost双闭环电压电流设计介绍了一种先进的电源转换技术,通过内外环控制策略优化输出电压和电流的稳定性与精度。此设计广泛应用于可再生能源系统及电子设备中,有效提升效率和性能。 BUCK-boost双闭环反馈电路的设计与调试包括扰动分析和负载分析。
  • 前馈Buck-Boost策略
    优质
    本文提出了一种采用输入电压前馈的双管Buck-Boost变换器的双闭环控制策略,有效提升了系统的动态响应与稳定性。 为了解决宽范围输入双管Buck-Boost变换器在Buck和Boost模式切换及输入电压波动情况下电感电流与输出电压出现较大变化的问题,本段落提出了一种带输入电压前馈的两模式平均电流控制策略。该方法结合了具有电压电流双重闭环结构的平均电流控制以及单载波双调制技术,以提高变换器动态响应性能,并实现两种工作模式间的平滑过渡。同时,通过有效管理电感电流来确保设备的安全运行。 为了克服传统双闭环前馈函数实施和简化过程中的困难,本段落创新性地将输入电压前馈引入到电流内环中,从而显著提升了变换器的输入动态响应性能。最后,在MATLAB/Simulink仿真平台以及硬件试验平台上验证了所提出控制策略的有效性和可行性。
  • DCBoostBuck路及其PI滑模策略:动态仿分析
    优质
    本文研究了DC变换器中Boost和Buck电路的应用,并探讨了基于PI滑模双闭环控制策略的电流环与电压环动态特性,通过仿真验证其有效性。 本段落研究了DC变换器中的Boost电路、Buck电路以及Cuk电路,并采用PI控制器与滑模控制器的双闭环控制策略进行了动态仿真分析。其中内环使用平均电流采样,而Buck变器则采用了软启动技术以确保电流不会发生突变。通过仿真实验,在0.5秒的时间内完成了软启动过程,输出电压能够完美地跟随参考电压的变化;在1秒时加载开始后,虽然输出电压出现轻微波动,但很快又恢复到给定的参考值上。 整个仿真采用了完全离散化的处理方式,主电路和控制部分以不同的步长进行运行操作。这种设置更贴近实际应用中的情况。研究重点在于多类型DC变换器电路与双闭环控制系统之间的协同工作性能分析。