Advertisement

血氧脉搏模块原理图纸

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供详细的血氧脉搏监测模块工作原理图解及设计说明,包括硬件电路布局与软件算法实现,适用于医疗设备研发人员参考学习。 血氧脉搏模块原理图已在项目中使用并确认有效。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本资源提供详细的血氧脉搏监测模块工作原理图解及设计说明,包括硬件电路布局与软件算法实现,适用于医疗设备研发人员参考学习。 血氧脉搏模块原理图已在项目中使用并确认有效。
  • 仪资料(keil5).rar
    优质
    本文件包含使用Keil5开发环境编写的脉搏血氧仪相关程序和资料,适用于嵌入式系统开发者和技术爱好者学习研究。 复数的模可以通过以下公式计算:模值 * N / 2 对应于该频率下信号的幅度,而模值 / N 则对应直流信号的幅度。 ```cpp s1[i].real = sqrtf(s1[i].real*s1[i].real + s1[i].imag*s1[i].imag); s2[i].real = sqrtf(s2[i].real*s2[i].real + s2[i].imag*s2[i].imag); ``` 计算最大幅度值对应的索引: ```cpp s1_max_index = find_max_num_index(s1, 60); // 最大幅度值为第几个 s2_max_index = find_max_num_index(s2, 60); ``` 如果 `s1` 和 `s2` 的最大幅度值对应相同的索引,则可以计算心率: ```cpp if (s1_max_index == s2_max_index) { Heart_Rate = 60 * 100 * ((s1_max_index + s2_max_index) / 2) / FFT_N; } ``` 注意,这里的 `Heart_Rate` 变量用于存储计算得到的心率值。
  • 基于MAX30102的生命体征监测仪(、心率、饱和度及波形)
    优质
    本项目设计了一款基于MAX30102传感器的生命体征监测设备,可实时精准测量用户的脉搏、心率和血氧饱和度,并显示血氧波形。 生命体征监测仪使用MAX30102模块来监测脉搏心率、血氧饱和度及血氧波形。开发环境支持Arduino IDE和MicroPython,硬件兼容Raspberrypi Pico、Arduino Nano/Uno、ESP32以及STM32。
  • 基于STM32和Max30100的仪设计.zip
    优质
    本项目为一款基于STM32微控制器与Max30100传感器开发的便携式脉搏血氧仪,旨在监测用户的血氧饱和度及心率数据。 本设计采用STM32F103作为微处理器,通过I2C接口获取MAX30100采集的原始数据,并利用USART通信将这些数据发送到串口;PC端使用Python的pyserial模块实时接收串口数据后,借助Matplotlib库动态显示脉搏波形。通过对原始信号进行快速傅里叶变换(FFT),可以得到脉搏波的频率、直流分量和交流分量,并通过相应的计算公式得出心率和血氧饱和度值,在3.2寸电阻触摸屏上实时展示这些数据;此外,设计中还利用ESP8266 WiFi模块使STM32与手机进行通信,将测量结果同步到手机应用程序。
  • 光电仪的设计与实现(2014)
    优质
    本论文详细探讨了光电脉搏血氧仪的设计原理及实现方法,包括硬件电路设计、软件算法优化等内容,并通过实验验证其有效性和稳定性。 血氧饱和度是衡量供氧状态的重要指标之一,在疾病预防与治疗过程中具有重要意义。然而,现有的脉搏血氧仪存在功耗大、稳定性差以及成本与精度难以兼顾的问题。为此,本段落提出了一种性价比高、低功耗且支持无线传输的光电脉搏血氧仪设计方案。 该设计采用指夹式光电血氧探头采集信号,并以STM32芯片作为核心控制器对数据进行分析和处理并显示结果。这样可以实现便携、实时以及连续监测血氧饱和度的功能。最终,通过使用Fluke公司生产的Index2型血氧模拟仪进行了多次测试验证,在60%至80%的血氧饱和度范围内精度达到了±2%。
  • 基于MSP430的单芯片仪设计.pdf
    优质
    本论文介绍了采用MSP430微控制器设计的一款便携式单芯片脉搏血氧仪。系统集成了信号采集、处理和显示功能,旨在提供准确可靠的血氧饱和度监测。 这篇应用报告探讨了使用MSP430FG437微处理器(MCU)设计非侵入性光体积描记法系统,该技术也称为脉搏血氧仪。这种设备由一个外围探头与MCU结合,并在LCD显示屏上显示血液中的氧气饱和度和心率。在这个应用中,相同的传感器被用于监测心率和脉搏血氧水平。 探头可以放置在身体的边缘部位如指尖、耳垂或鼻梁等位置。该探头包含两个发光二极管(LED),一个发射可见红光波段(660纳米)的光线,另一个则发射红外线(940纳米)。通过测量这两种不同频率的光线穿透人体后的强度,并计算其比率来确定血液中的含氧量。
  • 基于AFE4490的反射式监测系统
    优质
    本系统采用AFE4490芯片设计,实现非侵入式的反射式脉搏血氧饱和度监测。集成光电传感器与信号处理模块,提供精准、稳定的生理参数测量,适用于医疗监护和个人健康管理。 由于透射式血氧仪的检测范围有限,本设计采用了反射式测量原理来构建光电容积脉搏波探头检测模块,并结合MSP430超低功耗单片机与AFE4490血氧模拟前端芯片实现对光电容积脉搏波信号的采集。通过MSP430控制AFE4490,实现了双波长发光管交替发光、数据采集及放大滤波,并运用数字信号处理技术进行去噪处理。实验结果显示,所设计的反射式血氧检测系统能够有效监测指尖脉搏,所得脉率和血氧参数误差均在3%以内。
  • 基于GD32和MAX30102的简单仪_Little-Emma.zip
    优质
    本项目为一款基于GD32微控制器与MAX30102传感器开发的简易脉搏血氧仪,适用于健康监测和个人健康管理。 设计合理:遵循模块化原则,便于后续扩展。 代码一致:保持统一的注释风格,方便理解。 资源充足:包含示例代码、详尽文档及演示材料。 欢迎下载学习交流!
  • 基于蓝牙技术的仪的设计.pdf
    优质
    本文档探讨了利用蓝牙技术设计便携式脉搏血氧仪的方法和实现过程,详细介绍了系统硬件架构、软件开发及实际应用效果。 本段落介绍了应用蓝牙无线技术设计的便携式脉搏血氧仪的设计方案。该设备采用最新型、低功耗的STM32芯片及数字光频器件构建高效稳定的脉搏血氧饱和度测量电路,并通过建立蓝牙通信网络来解决患者行动上的不便,从而为家庭监护和远程医疗提供了便利条件。
  • LabVIEW测量
    优质
    本项目致力于开发基于LabVIEW平台的血氧测量模块,利用先进的信号处理技术实现精确的血氧饱和度检测,适用于医疗与科研领域。 LabVIEW血氧测量部分涉及使用适当的传感器来获取血液中的氧气饱和度数据,并通过LabVIEW软件进行处理和分析,以实现对血氧水平的实时监测与显示。此过程包括设置正确的硬件接口、编写必要的VI(虚拟仪器)程序以及调试整个系统确保其准确性和稳定性。