Advertisement

Harris Corner Detection用于障碍物检测。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
系统能够自动识别图像中的障碍物,并利用Harris角点检测技术精确地确定下一个障碍物角落的坐标点。此外,开发人员可以灵活地将训练样本替换为其他照片,或者调整代码逻辑,从而实现对实时监测功能的持续优化和改进。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Harris角点
    优质
    本研究探讨了Harris角点检测算法在识别图像中关键特征点的应用,并创新性地将其应用于移动机器人上的障碍物检测系统,提高机器人的自主导航能力。 自动检测图片中的障碍物可以通过Harris角点检测来确定一个障碍物角落处的点。开发者可以将样本照片替换为其他图像,并且也可以调整代码以实现实时监测功能。
  • RGBD相机进行
    优质
    本研究采用RGBD相机技术,通过深度信息和彩色图像结合的方法,实现对环境中的障碍物进行高效、准确的检测与识别。 检测障碍物是机器人自主移动的基础。为了提高障碍物识别的效率和准确率,本段落提出了一种基于RGBD摄像头的障碍物检测方法,主要分为两个部分:一是对不规则形状障碍物进行轮廓确定;二是计算出其长度、宽度等信息。 具体来说,在处理不同形状与大小的障碍物体时,该系统会利用RGBD摄像头实时采集图像并传输至数据处理中心。通过改良帧差法和最小矩形匹配算法结合图像处理技术来识别目标物体,并且运用深度图及其阈值以获取到其相对位置信息;随后采用坐标转换方法进一步计算出障碍物的高度与宽度。 实验结果显示,在不同视角下检测同一物体时的误差均不超过9%。这表明改进后的帧差法能够有效提高轮廓确定精度,而基于变换坐标的算法则在速度上具有明显优势。因此可以认为该种基于RGBD摄像头设计的障碍物检测方案具备良好的应用前景和实用价值。
  • 道路的分割与
    优质
    本研究专注于开发先进的算法和技术,用于有效识别和区分道路上的各种障碍物,以提升交通安全和自动驾驶系统的性能。 利用MATLAB进行道路障碍物的提取、定位和分割。
  • 深度相机进行.rar
    优质
    本项目旨在开发一种基于深度相机技术的高效障碍物检测系统,通过实时捕捉和分析环境深度信息,实现对周围障碍物的精准识别与定位,提升智能设备在复杂环境中的自主导航能力。 基于深度相机的障碍物检测技术能够有效地识别环境中的障碍物,为机器人导航、自动驾驶等领域提供重要的感知支持。通过分析深度图像数据,系统可以实时捕捉并处理周围物体的位置信息,从而帮助设备避开潜在的风险区域,确保操作的安全性和效率。 这段话重新组织了原文的核心内容,并且避免了重复表述和不必要的冗余。
  • 单目视觉的方法
    优质
    本研究提出了一种基于单目视觉技术的创新性障碍物检测方法,旨在提高无人系统的环境感知能力。通过分析图像序列中的深度信息和运动特征,该方法能有效识别并分类多种类型的障碍物,为智能驾驶提供可靠的数据支持。 本段落介绍了一种基于单目视觉的障碍物检测算法,并将其应用于无人驾驶系统中。该文章发表在《Sensors》期刊上。
  • 机器人视觉的系统
    优质
    本系统利用机器人视觉技术进行实时障碍物检测与识别,旨在提高自主移动机器人的环境适应能力和安全性。 基于机器人视觉系统的障碍物检测是现代机器人技术中的一个重要课题,特别是在室内移动机器人的自主导航方面得到了广泛应用和发展。 本段落由北京理工大学的研究团队提出,并探讨了一种采用线结构光的室内移动机器人障碍物检测系统。该方法利用三维测量技术,通过向地面投射结构光线并用摄像头捕捉被照亮区域来获取图像信息。为了提高图像质量,研究中使用了650纳米滤光片以仅允许结构光线通过。 论文详细介绍了包含四个坐标系的模型:世界坐标系(W)、摄像机坐标系(C)、图像坐标系(I)以及帧存坐标系,用于准确描述环境中的障碍物。同时考虑机器人旋转角和俯仰角的影响,以便更精确地理解和定位障碍物位置。 在实际操作中,系统通过实时处理结构光图象来检测潜在的障碍物。具体而言,当光线遇到障碍时会产生变形现象;通过对这些图像与标准图案进行比对分析,可以判断是否存在障碍及其类型,并获取其特征信息如大小、形状等数据以帮助机器人避开障碍。 该技术具有高精度和实时性的优点,在复杂室内环境中表现良好,能够有效避免碰撞并提高自主导航能力。然而,仍需克服诸如光照变化干扰及算法复杂度提升等问题。 综上所述,这项研究展示了基于线结构光的视觉系统在增强机器人环境感知与智能行为方面的重要潜力,并为促进未来机器人技术进步提供了有价值的参考依据。
  • High-Speed Corner Detection Using Machine Learning.pdf
    优质
    本文探讨了一种基于机器学习技术实现高速角点检测的方法,旨在提高计算机视觉领域中图像处理的速度和准确性。 Edward Rosten 和 Tom Drummond 在2006年提出了FAST角点检测算法。我的博客里有对该算法的详细介绍,欢迎交流。
  • 铁路的六种YOLOV8方法
    优质
    本文探讨了针对铁路安全问题中的障碍物检测,介绍了六种基于YOLOV8模型的技术方案,并分析比较其性能和适用场景。 在铁路安全领域,及时准确地检测障碍物至关重要,因为它直接影响列车运行的安全性和乘客的生命安全。本段落将探讨一种基于YOLOV8的铁路障碍物检测技术,该技术通过训练得到PT模型,并进一步转换为ONNX格式以便实际应用中使用OpenCV进行高效调用。 YOLO(You Only Look Once)是一种实时目标检测系统,在计算机视觉领域因其快速而准确的特点被广泛应用。YOLOV8是这一系列的最新版本,它在前几代的基础上进行了优化,提高了检测速度和精度。该模型的基本思想是将图像分割为多个网格,并且每个网格负责预测其内部是否存在目标以及目标类别及边界框坐标信息。通过改进网络结构、损失函数优化及高效的训练策略,YOLOV8进一步提升了这些性能指标。 在本项目中,我们采用了六种不同的YOLOV8模型来检测铁路线上的潜在障碍物,可能包括动物、落物和非法侵入人员等。每种模型针对特定类型的障碍物进行了定制化处理以提高识别率。通过大规模的标注数据集进行训练后,这些模型学会了如何在复杂环境及各种光照条件下精确地定位并识别目标。 训练完成后,通常会得到一个PT(PyTorch)格式的模型文件。为了能够在不同平台和环境中部署使用,我们需要将该模型转换为ONNX(Open Neural Network Exchange)格式。这种开放标准支持多种深度学习框架之间的互操作性,并确保了模型兼容性的需求得以满足。 在实际应用中,我们可以利用OpenCV这一跨平台库加载并执行ONNX模型,在铁路监控摄像头的视频流上实时运行障碍物检测算法。由于具备高效的图像处理能力,该系统能够快速响应并对铁路安全起到关键作用。 综上所述,“铁道障碍物检测6种YOLOV8项目”展示了深度学习技术在保障铁路运输安全性方面的应用价值。结合YOLOV8的高效目标识别、ONNX模型格式的优势以及OpenCV实时图像处理的能力,该项目构建了一个既可靠又高效的系统框架。这不仅有助于提升铁路运营的安全性和效率水平,也为其他领域的目标检测任务提供了宝贵参考和借鉴经验。
  • MATLAB进行车道线、车辆和
    优质
    本项目运用MATLAB技术实现智能驾驶辅助系统中的关键功能,包括车道线识别、车辆及障碍物检测。通过图像处理与机器学习算法,提高道路行驶安全性。 随着生活水平的提升与科技进步,智能驾驶技术逐渐成为研究热点。先进驾驶辅助系统(ADAS)是这一领域的一个重要分支,通过使用传感器感知周围环境来协助驾驶员操作或实现车辆自动化控制,从而提高行车安全性。车道线检测作为ADAS的关键部分,能帮助确定车辆在当前车道的位置,并为车道偏离预警提供依据。 然而,在实际应用中由于存在视角遮挡、道路阴影及裂痕等问题以及邻近车辆压线干扰等情况,使得实时准确地检测出车道线变得极具挑战性。目前主要采用车内摄像头并运用图像处理技术进行视频流分析来实现这一目标,但该方法在复杂多变的行车环境中容易出现误检或漏检现象。 本项目旨在通过构建单目相机模型、生成鸟瞰视图、转换为灰度图像以及二值化和感兴趣区域(ROI)检测等步骤,以期达到更高效准确地识别车道线的目的。
  • 机器视觉的列车前向
    优质
    本项目致力于开发一种基于机器视觉技术的列车前向障碍物检测系统,旨在提高铁路运输的安全性和可靠性。通过图像识别和深度学习算法,实时监测列车前方可能存在的障碍物,并及时预警,避免事故发生。 对火车摄像头获得的图像进行预处理包括滤波、增强以及边缘检测三个步骤:首先使用高斯滤波器去除噪声;然后通过直方图均衡化和平滑对比度来提高图像质量;最后利用Canny算子提取清晰的边缘信息。 静态障碍物的识别主要集中在铁轨内侧和轨道上,具体分为三步: 1. 提取铁轨框架。 2. 设置检测窗口。 3. 依据图像八维纹理特征进行障碍物判断。