Advertisement

交通灯控制逻辑电路设计(数电设计-Proteus)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目为数字电子课程作业,基于Proteus平台设计实现了一个交通灯控制系统。该系统采用逻辑电路来模拟城市十字路口红绿灯变换规则,通过编程优化交通流量。 设计一个十字路口交通信号灯控制器,需满足以下要求: 1. 根据图4.1所示的顺序工作流程进行设计。该图设南北方向红、黄、绿灯分别为NSR(North-South Red)、NSY(North-South Yellow)和NSG(North-South Green),东西方向红、黄、绿灯则分别标记为EWR(East-West Red)、EWY(East-West Yellow)和EWG(East-West Green)。这些信号的工作方式要求某些情况下同时进行,例如南北向亮绿灯时,东西向应显示红灯;南北向亮黄灯或红灯时,相应地东西方向也需显示相应的状态。 2. 控制器需要确保两个方向的交通流量均衡。具体来说,在一个周期内,东西方向的红色信号持续时间应当等于该周期中南北方向绿、黄两色信号总和的时间;同样道理,南北方向亮红灯的时间应与东西向亮黄绿灯光时长之和相等。 根据图4.2所示的工作流程安排,假设每个基本单位时间为3秒,则整个系统的一次循环为36秒。具体参数如下:南北方向的绿灯持续15秒、黄灯间歇闪耀3秒(此处“间歇”意味着可能并非连续亮起),红灯则亮18秒;东西向信号与此相反,即其红色时间等于南北两色之和。 通过这样的设计可以确保车辆在十字路口的安全通行,并且能够有效地管理交通流量。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • -Proteus
    优质
    本项目为数字电子课程作业,基于Proteus平台设计实现了一个交通灯控制系统。该系统采用逻辑电路来模拟城市十字路口红绿灯变换规则,通过编程优化交通流量。 设计一个十字路口交通信号灯控制器,需满足以下要求: 1. 根据图4.1所示的顺序工作流程进行设计。该图设南北方向红、黄、绿灯分别为NSR(North-South Red)、NSY(North-South Yellow)和NSG(North-South Green),东西方向红、黄、绿灯则分别标记为EWR(East-West Red)、EWY(East-West Yellow)和EWG(East-West Green)。这些信号的工作方式要求某些情况下同时进行,例如南北向亮绿灯时,东西向应显示红灯;南北向亮黄灯或红灯时,相应地东西方向也需显示相应的状态。 2. 控制器需要确保两个方向的交通流量均衡。具体来说,在一个周期内,东西方向的红色信号持续时间应当等于该周期中南北方向绿、黄两色信号总和的时间;同样道理,南北方向亮红灯的时间应与东西向亮黄绿灯光时长之和相等。 根据图4.2所示的工作流程安排,假设每个基本单位时间为3秒,则整个系统的一次循环为36秒。具体参数如下:南北方向的绿灯持续15秒、黄灯间歇闪耀3秒(此处“间歇”意味着可能并非连续亮起),红灯则亮18秒;东西向信号与此相反,即其红色时间等于南北两色之和。 通过这样的设计可以确保车辆在十字路口的安全通行,并且能够有效地管理交通流量。
  • 课程中的
    优质
    本课程设计聚焦于利用数字逻辑电路实现交通信号灯控制系统,旨在通过理论与实践结合的方式,培养学生分析、设计和调试复杂数字系统的能力。 关于25S+5S的交通控制灯系统,我们已经完成了报告编写,并使用Multisim进行了仿真测试。
  • 信号.doc
    优质
    本文档《交通信号灯控制逻辑电路设计》探讨了交通信号灯系统的电子电路设计方案,详细描述了如何通过逻辑门和时序电路实现信号灯的自动转换与协调。 为了确保十字路口的车辆顺畅通行,通常会使用自动控制的交通信号灯进行指挥。红灯亮起表示禁止该方向的车辆通行;黄灯亮起则提示司机停车等待;绿灯亮起意味着可以安全通过。
  • 信号
    优质
    本项目专注于交通信号灯控制系统的设计与实现,通过优化电路结构提高交通安全和通行效率。 交通灯控制器电路包括计数电路、脉冲信号源、组合逻辑门控制电路、译码器以及在特殊情况下需要的手动电路。在不同的工作状态下,计数器对单位时钟脉冲进行计数,并且其输出不仅控制着交通灯的变化,还负责启动下一状态和复位上一状态的操作。
  • 简化的报告
    优质
    本报告探讨了一种简化版的交通灯控制系统逻辑电路设计方案,旨在提高道路交叉口的通行效率和安全性。通过优化信号灯切换规则与增加行人过街请求功能,该系统能够更好地适应不同时间段的车流变化,并减少交通拥堵和事故发生的可能性。 简易交通灯控制逻辑电路设计报告 一、 设计任务和要求 设计一个简易交通灯控制逻辑电路,具体要求如下: 1. 东西方向绿灯亮起,南北方向红灯亮起,持续时间为15秒。 2. 东西方向与南北方向的黄灯同时亮起,时间长度为5秒。 3. 南北方向绿灯亮起,东西方向红灯熄灭,保持时间为10秒。 4. 在紧急情况下,可以手动控制使所有四个方向上的红灯全部点亮。
  • 课程.rar(70.33K)
    优质
    本资源为《交通灯控制电路的数字逻辑课程设计》,包含详细的设计文档和原理图,适用于电子工程与信息技术专业的学生进行实践学习。大小70.33K。 数字电子技术课程设计实验报告 一、课程性质:《数字逻辑》课程设计。 二、课程目的:通过本次训练使学生能够综合运用所学的《数字逻辑》基本知识,利用电脑EWB仿真软件进行电路的设计、仿真实验和调试等操作。此次使用的计算机仿真软件版本为EWB Version 5.0c。 三、课程设计题目: 题目名称:交通灯控制电路的设计 具体要求如下: 1. 设计一个十字路口的交通信号控制系统,确保东西方向车道与南北方向车道上的车辆交替通行,并设定每次通过时间为45秒。时间参数可以进行设置和修改。 2. 当绿灯转为红灯时,在此之前需要先亮起黄灯持续五秒钟以警告驾驶员减速停车; 3. 黄灯在显示期间应每秒钟闪烁一次; 4. 对于东西方向车道与南北方向车道,除了有红色、黄色及绿色指示外还需使用数字显示器显示出当前灯光状态的剩余时间(采用倒计时方式)。 5. 同步设置人行横道上的红绿信号灯提示。 四、设计原理与参考电路: 1. 分析系统的逻辑功能,并绘制出其框图。交通灯控制系统的原理如下所示: 2. 信号转换状态说明: - 状态一:东西方向车道为绿色,允许车辆通行;南北方向车道为红色,禁止车辆及行人通过。 - 状态二:东西方向车道切换至黄色指示灯亮起时,要求减速缓行;同时南北方向车道仍保持红灯禁行信号不变; - 状态三:东西方向车道变为红色停止状态,禁止通行;而此时南北方向车道则转为绿色允许车辆及行人通过。 - 状态四:当东西方向车道持续处于红色停驶状态下时,其黄灯再次亮起作为过渡提示;同时南北方向也进入黄色缓行阶段。
  • 基于
    优质
    本项目基于数字逻辑电路原理,设计了一套智能交通灯系统,旨在优化道路车辆通行效率及行人安全,通过逻辑门和触发器实现信号灯切换控制。 用数字逻辑实现的电路对于刚接触数字电路的同学来说可能充满期待,并且他们可能会对嵌入式高级内容表示兴趣。这段文字希望提供详细的内容来满足他们的需求。
  • 实验(实验):
    优质
    本课程为《数字电子技术》实践环节,重点在于设计并实现一个基于数字逻辑的交通灯控制系统。学生将学习如何运用所学理论知识解决实际问题,通过硬件电路的设计与调试来控制交通信号灯的工作状态,包括红绿灯切换时间、行人过街指示等,旨在提升学生的工程实践能力。 设计一个十字路口交通灯控制器以确保车辆能够安全、顺畅地通过交叉口。 系统功能如下: 1. 主干道与支路各有红黄绿三盏信号灯,并且按照一定规则交替工作:当主干道为绿色时,支线路的信号灯应显示红色;同样,在主干道亮起黄色信号灯或红色信号灯的情况下,支线路也相应地保持红色。反之亦然。 2. 两个方向的工作顺序如下:每一方向绿灯持续时间为10秒,黄灯作为缓冲时间则为5秒。 3. 在十字路口的通行过程中需要有数字显示来提示剩余的时间,并且该计数器以递减的方式进行倒计时,在到达零时刻后数码管自动熄灭。 4. 控制方式:在没有紧急情况发生的情况下,主干道绿灯亮10秒之后转为黄灯5秒钟的缓冲期再切换至支路通行模式。当有救护车或警车等特殊情况需要优先通过路口时,可手动操作开关或者按下按钮使所有方向同时变为红灯状态直至紧急事件结束;此时松开按钮系统将自动恢复到被中断前的状态继续运行。
  • 课程
    优质
    本课程设计围绕交通控制灯系统进行,旨在通过数字逻辑电路的设计与实现,教授学生信号处理、时序控制及硬件描述语言的应用。 合工大数字逻辑课程设计包括完整的报告及可运行的代码。该设计要求使用实验台上的4个红色指示灯、4个绿色指示灯和4个黄色指示灯来模拟路口东、西、南、北四个方向的红绿黄交通信号,控制这些灯光按照以下规律亮灭: 1. 初始状态为四面红灯全亮,持续时间1秒; 2. 东西向绿灯亮起,南北向红灯保持点亮。此时允许东西方向车辆通行,时间为5秒; 3. 东西向黄灯闪烁而南北向仍为红色信号,此阶段用于提醒司机减速准备停车或让行其他方向的交通流,持续时间2秒; 4. 接下来是东、西两方红灯亮起,并且南北方绿灯点亮。允许南北方向车辆通行5秒钟; 5. 此后东西向保持红灯状态而南方和北面黄灯开始闪烁,表示即将转换信号给对面车道使用,持续时间2秒; 6. 然后再重复步骤②的流程继续循环执行下去; 7. 当有紧急情况发生(如救护车、警车等需要优先通行)时按压单次按钮触发所有方向红灯亮起。待紧急状况解除后自动恢复到初始状态并重新开始上述运行模式。 整个设计过程应确保交通信号切换逻辑清晰,能够有效保障交通安全与顺畅流动。