Advertisement

机器学习采用层次聚类方法。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源详细阐述了层次聚类(hierarchical clustering)的核心步骤:首先,我们假定数据集中的每一个独立样本都属于一个单独的类别,随后计算每个类别之间的距离关系,具体而言,便是衡量各个类别间的相似程度。接下来,将彼此最为接近的两个类别合并为一个新的类别,从而有效减少类别的总数。随后,重新计算新产生的类别与所有剩余旧类别之间的相似度。这个过程持续循环执行步骤二和步骤三,直至数据集中的所有样本点都被整合为一个单一的类别。这一计算流程实质上是对一个二叉树结构的重构过程,只不过其构建方式是从树叶节点逐渐扩展到树枝和树干的逐步构建方式。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 篇七)——优化算
    优质
    本篇文章探讨了层次聚类优化算法在机器学习中的应用,详细介绍了该方法的基本原理及其如何改进传统聚类技术。通过实例分析展示了其高效性和适用性。 上篇博客介绍了层次聚类及其传统的AGNES算法。本篇将探讨一种优化的层次聚类方法。 优化算法之一是BIRCH(平衡迭代削减聚类法)。该算法利用3元组表示每个簇的相关信息,并通过构建满足分枝因子和簇直径限制条件的聚类特征树来实现高效分类。这种结构本质上是一个高度平衡且具有两个参数——即分枝因子与类别直径的高度自适应树。其中,节点的最大子节点数量由分枝因子决定;而类别直径则反映了同一类型数据点之间的距离范围。非叶子节点代表其所有孩子节点的聚类特征值之和或最大值。 BIRCH算法的优点包括: - 适用于大规模的数据集处理; - 具有线性时间复杂度,效率较高。 然而也有局限性:仅对呈凸形或者球状分布的数据有效;此外,在使用该方法时需要预先设定好聚类数量以及簇之间的关系。
  • 中的应 Hierarchical Clustering in Machine Learning
    优质
    本研究探讨了层次聚类算法在机器学习领域的应用,通过构建数据点间的层级关系,实现高效的数据分类与分析。 层次聚类的基本步骤如下:首先将每个样本视为一个独立的类别,并计算这些类之间的距离或相似度。接着,选择最接近的两个类别合并成一个新的单一类别,这样总的类别数量就会减少一个。然后重新评估这个新形成的类别与其他未被合并的旧类别的相似度。重复上述过程直到所有数据点最终聚集成单个大类为止。整个计算过程中类似于构建一棵二叉树的过程,但其方向是从树叶到树枝再到树干的方向进行构建。本资源详细介绍了层次聚类算法的具体操作方法和步骤。
  • MATLAB_Hierarchical.zip_MATLAB
    优质
    该资源包提供了利用MATLAB进行层次聚类分析的代码和示例数据。适用于数据分析、机器学习等领域,帮助用户理解和应用层次聚类算法。 层次聚类算法的MATLAB实现,不使用内置函数。
  • 代码.zip__MATLAB实现_代码
    优质
    本资源提供了一套使用MATLAB编写的层次聚类算法代码。通过该代码,用户可以便捷地进行数据分层和集群分析,适用于科研及工程应用中对复杂数据集的处理需求。 用MATLAB实现层次聚类法,不是通过调用库函数完成的,而是严格按照算法原理一步步编写代码来实现的。
  • BIRCH
    优质
    BIRCH层次聚类算法是一种高效的数据聚类方法,特别适用于大规模数据集。通过构建一个能够容纳大量信息的树状结构,它能够在一次或多次扫描数据后生成高质量的簇摘要,从而有效减少计算复杂度和空间需求。 **BIRCH聚类算法详解** BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies)是一种高效且可伸缩的层次聚类方法,特别适用于大规模数据集处理。该算法的主要特点在于其分层构建过程和对局部特征的有效表示,这使得它在处理大数据时具有较高的时间和空间效率。 ### 一、BIRCH算法的基本概念 1. **局部特征直方图(CLUSTER FEATURE)**:BIRCH的核心是使用CLUSTER FEATURE (CF)。这是一种紧凑的数据结构,用于存储子样本集的信息。每个CF包含两个主要部分:样本数量(N)和中心化及规范化累积向量(CS),通过不断合并子样本集,CF可以逐步表示更大的聚类。 2. **层次结构的构建**:BIRCH算法在迭代过程中逐渐建立层级结构。每次新数据点到来时,会与现有的CF进行比较,并根据相似性来决定是将该数据点加入到一个已存在的CF中还是创建一个新的CF。这一过程确保了每个节点的数据分布较为平衡,从而避免了一个单独的节点过于庞大导致内存消耗过多的问题。 3. **存储效率**:BIRCH使用固定大小的CF结构来存储数据信息,即使面对庞大的数据集也能有效控制内存占用情况,这使得它在大数据场景下具有优异的表现能力。 ### 二、BIRCH算法流程 1. **初始化阶段**: 开始时每个样本作为一个独立的CLUSTER FEATURE (CF)。 2. **合并过程**:当新来的样本到达时,会与现有的CF进行对比。如果该样本和某个已存在的CF之间的距离小于预设阈值,则将此样本添加到对应的CF中;反之则创建一个新的CF并加入这个新的数据点。 3. **更新CLUSTER FEATURE**: 每次合并操作后都需要对相应的N(数量)以及CS(累积向量)进行修正以反映最新的信息状态。 4. **层次构建**:重复上述的步骤直到所有样本都被处理完毕,最终会形成一棵由CF节点构成的树状结构即为所求得的层级体系。 5. **生成最终聚类结果**: 通常需要借助其他类型的聚类算法(例如谱聚类或DBSCAN)来对生成出来的层次化模型进行剪枝操作以获得最佳效果。这是因为BIRCH本身并不能直接确定最合适的簇数。 ### 三、BIRCH的优点与缺点 **优点**: 1. **高效性**: BIRCH无需全局扫描数据,只需顺序读取即可完成处理任务,大大降低了计算成本。 2. **可扩展性强**: 固定大小的CF使得它能够轻松应对大规模的数据集挑战。 3. **内存友好型**: 通过避免一次加载所有原始数据的方式减少了对系统资源的需求。 **缺点**: 1. **聚类质量较低**: 相比于其他算法(如K-Means或谱聚类),BIRCH生成的最终结果可能不够理想。 2. **依赖后续剪枝策略**: BIRCH构建出来的层次结构需要通过额外的方法来完成最后一步优化,这就增加了复杂性和不确定性。 ### 四、应用与扩展 BIRCH算法在数据挖掘、推荐系统及图像分析等多个领域都有广泛的应用。由于其高效的特性,它常常被用作预处理步骤为后续的深入分析提供初步聚类结果。此外,也有研究人员对BIRCH进行了改进和优化(如调整CF结构或合并策略),以期进一步提高聚类准确性和效率。 总结来说,凭借独特的数据表示方式与层次构建方法,BIRCH成为了一种有效工具来处理大规模的数据集问题;尽管其在某些方面的表现可能不如同类算法优秀,但它的高效性以及对内存管理的优势使其成为一个值得考虑的选择。
  • 优质
    层次式聚类是一种通过构建分层树状结构(称为 dendrogram)对数据对象进行分类的方法,依据相似性逐步合并或分割数据集。 关于层次聚类的一些算法的介绍,如果能够理解的话可以进一步探讨。不过目前提供的内容有些混乱,建议明确表达想要讨论的具体算法或者问题点。
  • BIRCH
    优质
    BIRCH层次聚类算法是一种高效的 clustering 方法,特别适用于处理大规模数据集。它通过构建集群特征树来识别数据中的密集区域,并形成簇结构。 Zhang T, Ramakrishnan R, Livny M. BIRCH: A new data clustering algorithm and its applications[J]. Data Mining and Knowledge Discovery, 1997, 1(2): 141-182. 这是一篇不错的英文文献。
  • 的Matlab代码(凝).zip
    优质
    本资源提供了一套用于执行凝聚层次聚类分析的MATLAB代码。通过该工具,用户能够便捷地对数据集进行分层聚类以探索其内在结构,并生成树状图展示结果。 聚类就是单纯的聚类算法。别的我也不知道。
  • AGNES.zip
    优质
    AGNES层次聚类算法是一种自底向上的聚类方法,通过不断合并相近的数据点或数据点组形成层级结构,适用于数据分析和模式识别。此压缩包包含相关代码及文档。 我用C++实现了一个AGNES凝聚层次聚类算法,并提供了一个完整的VS2010工程文件。代码包含测试数据、良好的编程风格以及详细的注释,可以运行并得到正确结果。
  • 代码
    优质
    这段代码实现了层次聚类算法,能够根据数据间的相似性或距离进行分层聚合分析,适用于无监督学习场景下的数据分类与可视化。 我完成了基于熵特征的层次聚类分析,并进行了可视化展示。此外,我还提供了一个数据集用于支持这项研究。