Advertisement

基于自适应卡尔曼滤波的锂离子电池状态估计SOC

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文提出了一种基于自适应卡尔曼滤波算法的锂离子电池状态估计方法,特别针对荷电状态(SOC)进行精确预测和优化。通过调整参数以应对模型不确定性及测量噪声,该技术显著提升了SOC估算的准确性与可靠性,从而保障了电池系统的高效运行与长久寿命。 采用自适应卡尔曼滤波方法,并基于锂离子动力电池的等效电路模型,在未知干扰噪声环境下在线估计电动汽车锂离子动力电池荷电状态(SOC)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • SOC
    优质
    本文提出了一种基于自适应卡尔曼滤波算法的锂离子电池状态估计方法,特别针对荷电状态(SOC)进行精确预测和优化。通过调整参数以应对模型不确定性及测量噪声,该技术显著提升了SOC估算的准确性与可靠性,从而保障了电池系统的高效运行与长久寿命。 采用自适应卡尔曼滤波方法,并基于锂离子动力电池的等效电路模型,在未知干扰噪声环境下在线估计电动汽车锂离子动力电池荷电状态(SOC)。
  • 中心差分SOC
    优质
    本研究提出了一种利用中心差分卡尔曼滤波方法来提升锂离子电池荷电状态(SOC)估计精度的技术方案。通过优化算法,提高了在各种工况下的估算准确性与稳定性,为电池管理系统提供了可靠的数据支持。 使用MATLAB编程,根据美国马里兰大学先进寿命周期工程中心的公开数据,基于二阶RC模型估计电池在FUDS工况下的SOC。
  • SOC方法.rar__SOC_算_算法
    优质
    本资源介绍了一种基于卡尔曼滤波技术的电池荷电状态(SOC)估算方法,特别适用于锂电池。通过精确建模和优化算法参数,提高电池管理系统的性能与准确性。 利用卡尔曼滤波估计锂离子电池的SOC状态可以取得很好的效果,并且误差很小。
  • 利用扩展器(AEKF)进行SOC
    优质
    本研究提出了一种基于自适应扩展卡尔曼滤波器(AEKF)的方法,有效提升了锂离子电池状态-of-charge (SOC) 估计精度和鲁棒性。 AEKF_SOC_Estimation函数利用二阶RC等效电路模型(ECM)与自适应扩展卡尔曼滤波器(AEKF)来估计电池的端电压(Vt)及荷电状态(SOC)。
  • 利用扩展(AEKF)和粒(PF)算法评SOC
    优质
    本研究采用AEKF与PF算法,精准评估锂离子电池状态(SOC),提升电池管理系统性能,保障电池安全高效运行。 在使用二阶RC模型时,需要将以下公式中的参数替换为自己的数据: \[ R0 = -0.07495 \times (x(4))^4 + 0.2187 \times (x(4))^3 - 0.1729 \times (x(4))^2 + 0.01904 \times (x(4)) + 0.1973 \] \[ R1 = 0.07826 \times (x(4))^4 - 0.2208 \times (x(4))^3 + 0.217 \times (x(4))^2 - 0.08761 \times (x(4)) + 0.01664 \] \[ R2 = 0.1248 \times (x(4))^4 - 0.2545 \times (x(4))^3 + 0.1254 \times (x(4))^2 - 0.03868 \times (x(4)) + 0.05978 \] \[ C1 = 2431 \times (x(4))^4 - 4606 \times (x(4))^3 + 3084 \times (x(4))^2 - 589 \times (x(4)) + 209.8 \] \[ C2 = 681.1 \times (x(4))^4 - 3197 \times (x(4))^3 + 4595 \times (x(4))^2 - 3114 \times (x(4)) + 1444 \]
  • SOC模型及MATLAB仿真
    优质
    本研究提出了一种基于自适应卡尔曼滤波算法的锂离子电池荷电状态(SOC)估计方法,并通过MATLAB进行了仿真实验,验证了该模型的有效性和准确性。 【达摩老生出品,必属精品】资源名:自适应卡尔曼滤波估算SOC模型_锂电池模型_SOC估算模型_卡尔曼滤波算法_锂电池SOC估算模型_matlab仿真 资源类型:matlab项目全套源码 源码说明:全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
  • 算法
    优质
    本文探讨了在锂电池管理系统中应用卡尔曼滤波算法进行荷电状态(SOC)估计的方法,分析其准确性与适用性。 本段落旨在研究卡尔曼滤波算法在锂电池荷电状态(SOC)估计与监测中的应用效果。通过构建Thevenin电池模型,并结合实际的恒定电流充放电实验数据,模拟了电池的工作特性。文章分别采用传统卡尔曼滤波(KF)和扩展卡尔曼滤波(EKF)两种方法对锂电池的荷电状态进行估测。 研究结果表明:基于Thevenin电池模型的KF与EKF算法均能够快速、准确地估计出锂电池的荷电状态;在初始值设定为80%时,EKF算法显示出更好的参数适应性。此外,在利用卡尔曼滤波算法对电池端电压进行估测的过程中发现,其估算结果相对于真实值存在一个大约0.05V的恒定偏差。
  • 利用无迹(UKF)进行SOC
    优质
    本研究探讨了采用无迹卡尔曼滤波技术对锂离子电池的状态-of-charge(SOC)进行精确估计的方法。通过优化算法参数,提高了电池管理系统的性能和可靠性。 压缩包内包含一个MATLAB主代码及电流电压数据、SOC-OCV拟合数据以及二阶锂电池的R0、R1、R2、C1、C2参数数据,将这些数据导入工作空间即可完美运行代码。该代码使用无迹卡尔曼滤波估计电池状态(SOC),并将最终结果与安时积分法进行对比,并生成两张对比图。代码中包含详细的备注信息,便于二次修改和适应不同的电流电压数据需求。此代码经过测试可以成功运行,适合新手及有一定基础的开发人员使用。