Advertisement

提升DSM精度的建筑物激光点云边缘线自动提取方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究提出了一种创新算法,用于从建筑物的激光点云数据中自动抽取精确的边缘线信息,显著提升了数字表面模型(DSM)的准确性与细节度。 在进行机载激光雷达扫描时,建筑物背面的地面边缘线常常被遮挡,导致无法获取精确的建筑物背面边缘点数据。这使得利用获得的激光点云进行三维重建时创建数字表面模型(DSM)的精度较低。为了消除由于缺失边缘点而导致的DSM精度下降问题,提出了一种自动提取建筑物地面缺失边缘线的方法;通过分析建筑物侧面和地面局部区域内的点云拟合趋势面,并计算相邻局部趋势面之间的交线来补充缺少的部分数据;最后利用包含完整边缘信息的数据重建了建筑的数字表面模型(DSM),并对添加边缘点前后的DSM精度进行了对比实验。仿真结果显示,提取并补全建筑物边缘点能够显著提高其重建DSM的高度精确度。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DSM线
    优质
    本研究提出了一种创新算法,用于从建筑物的激光点云数据中自动抽取精确的边缘线信息,显著提升了数字表面模型(DSM)的准确性与细节度。 在进行机载激光雷达扫描时,建筑物背面的地面边缘线常常被遮挡,导致无法获取精确的建筑物背面边缘点数据。这使得利用获得的激光点云进行三维重建时创建数字表面模型(DSM)的精度较低。为了消除由于缺失边缘点而导致的DSM精度下降问题,提出了一种自动提取建筑物地面缺失边缘线的方法;通过分析建筑物侧面和地面局部区域内的点云拟合趋势面,并计算相邻局部趋势面之间的交线来补充缺少的部分数据;最后利用包含完整边缘信息的数据重建了建筑的数字表面模型(DSM),并对添加边缘点前后的DSM精度进行了对比实验。仿真结果显示,提取并补全建筑物边缘点能够显著提高其重建DSM的高度精确度。
  • 雷达线
    优质
    本研究聚焦于从激光雷达获取的点云数据中高效准确地提取边缘线信息,旨在提升环境感知精度和自动化系统的性能。 点云边缘线提取是LIDAR(Light Detection and Ranging)技术在地理信息系统、遥感以及自动驾驶等领域中的关键步骤。LIDAR系统通过发射激光脉冲并测量其反射回来的时间,生成三维空间中的点云数据,这些数据包含了丰富的地形和地表特征信息。然而,原始的点云数据通常杂乱无章,需要进行预处理和分析才能提取出有用的信息,如地物边缘线,这有助于理解地表结构、进行地物分类和测绘。 在基于坡度和聚类的算法中: 1. 坡度:坡度是衡量地表倾斜程度的指标,它反映了地表高度变化的速率。在LIDAR点云中,我们可以计算每个点相对于周围点的高度差,通过这些差异可以识别出地形的陡峭区域,通常这些区域更可能是地物边缘。 2. 聚类:聚类是一种无监督学习方法,用于将相似的数据点分组。在LIDAR点云中,聚类算法(如DBSCAN、Mean Shift或Alpha Shapes)可以帮助我们找到连续的、相似特征的点集,这些集合可能对应于地物的表面。聚类有助于去除噪声,发现地物的连续部分,并为边缘检测提供基础。 Alpha Shapes是一种用于构建几何对象边界表示的方法,特别适用于不规则和多边形的点集。在LIDAR点云边缘提取中,Alpha Shapes可以创建一个动态调整的边界,该边界随着参数α的变化而变化,α值决定了边界对内部点的包容程度。当α减小时,边界会收缩,只包含最紧密连接的点,这样可以有效识别出地物的轮廓。 具体步骤如下: 1. 预处理:去除异常值、滤波和平滑点云以减少噪声和提高后续处理准确性。 2. 坡度计算:根据Z坐标差异计算每个点的坡度,找出具有较大坡度变化的点,这些点可能是边缘点。 3. 聚类分析:应用聚类算法将点云分割成多个具有相似属性的子集,每个子集可能代表一个地物。 4. Alpha Shapes构造:选择合适的α值,用Alpha Shapes算法构建每个聚类的边界。根据实际需求和点云特性调整参数。 5. 边缘提取:通过比较相邻聚类的Alpha Shapes边界确定地物边缘线,在边界交界处明确点云的边缘线。 6. 后处理:可能需要进一步优化边缘线,例如平滑处理以消除因算法造成的锯齿或不连续性。 基于坡度和聚类的方法用于从海量LIDAR点云数据中提取关键的地物特征。通过这一过程,我们可以为地表分析、地形建模、环境监测以及自动驾驶等应用提供重要的信息支持。Alpha Shapes以其灵活性和适应性在处理不规则形状的点云数据时展现出优势。
  • 基于车载道路
    优质
    本研究提出了一种新颖的方法,利用车载激光雷达技术获取的高精度点云数据来精确识别和提取道路边界信息。通过先进的算法处理大量散乱分布的数据点,能够有效分离道路与非道路区域,提高自动驾驶车辆的安全性和行驶效率。该方法在复杂多变的道路环境中展现出强大的适应能力和准确性。 车载激光扫描系统是一种能够快速获取道路及其周边环境三维信息的高科技设备。近年来,随着城市化进程加速及智能交通系统的增长需求,该技术在城市规划、交通控制与应急响应等方面的应用日益广泛。车载激光扫描系统通常配备多种传感器(如激光扫描仪、CCD相机、GPS和IMU),能够同步采集数据并提供高精度的道路环境三维表面信息。 然而,由于点云数据量庞大且场景复杂多样,从海量的点云数据中准确提取道路边界成为一大挑战。为解决这一问题,作者方莉娜与杨必胜提出了一种适用于城市道路环境的道路边界自动提取方法。该方法主要包括三个步骤:首先通过分析道路边界的形状和强度以及全局空间分布特征来识别潜在的道路边界点;其次,在不同尺度下进行多尺度特征分析,并利用维度特性对结果优化,以获得更准确的边界点云;最后,采用链接与插值技术精细提取道路边界。 为了验证其有效性,作者使用了Optech公司提供的车载激光扫描数据作为实验数据集。结果显示该方法能够精确地识别城市道路环境中的道路边界,在实际应用中展现出良好的潜力和可靠性。 在车载激光扫描系统的工作流程里,点云分割是一个关键环节。通过利用不同目标间的高程、强度或法向量差异将原始点云划分成多个子集,每个子集代表现实世界的一个特定对象(如建筑物、树木等)。本段落作者特别关注从地面点中识别路坎点云的过程,这是为了进一步区分和提取道路边界的关键步骤。 车载激光扫描技术在智慧城市规划与管理、三维城市建模及智能导航等领域具有广泛应用前景。然而,在实际操作过程中仍面临数据处理量大和技术难度高的挑战。因此,如何高效地对大量点云进行分析并从中提炼出有价值的信息是当前研究的重点和难点。本段落的研究成果为解决这些难题提供了新的思路与方法,并将促进车载激光扫描技术的进一步发展。
  • 基于向图线特征
    优质
    本研究提出了一种创新性的建筑直线特征提取算法,通过分析边缘方向图有效识别建筑中的直线元素,提高图像处理和计算机视觉领域的自动化水平。 从建筑物图像中提取直线是许多应用中的关键步骤,包括视觉导航、特征识别以及遥感影像处理等领域。针对复杂建筑物图像的情况,我们提出了一种基于边缘方向图的直线特征提取算法。该算法在Canny边缘检测的基础上引入了边缘方向编码策略,并通过分析9×9局部窗口内的结构来区分直线、曲线和点等不同类型的元素,从而生成一种新的辅助图像——边缘方向图。此外,通过对边缘方向图中连续线段的方向分布进行细致的分析,并结合直线误差判别准则及稀疏直线拟合方法,该算法能够有效识别出建筑物中的直线特征。 实验结果显示,相较于Hough变换和相位编组等传统技术而言,所提出的算法在检测复杂建筑图像中的直线方面表现出更高的准确性、更低的误报率以及漏检率,并且具备更强的稳健性。
  • 界与工具.zip - 界、识别及
    优质
    本工具包提供了一套用于处理点云数据的专业软件解决方案,专注于高效准确地进行边界和边缘的检测与提取。适用于三维建模、机器人导航等领域。 边界识别算法能够检测点云的边界和特征边缘。
  • 亚像素线
    优质
    本文探讨了亚像素精度下线与边缘提取技术,通过改进算法实现图像中线条及边界更为精确的定位,增强视觉系统的性能。 本段落档探讨了亚像素级线段和边缘提取的技术。通过精确到次像素的细节处理,可以显著提升图像分析与计算机视觉任务中的精度和可靠性。该方法在识别细微结构、改善物体边界清晰度以及增强模式匹配等方面具有广泛应用潜力。文档详细介绍了相关算法原理及其优化策略,并提供了实验结果以展示其有效性。
  • 优质
    简介:点云边界提取方法是指从三维空间的数据集中识别并分离出物体边缘的技术手段,广泛应用于机器人导航、逆向工程及虚拟现实等领域。 能够提取散乱点云数据中的边界点及特征点,并进行显示。
  • 基于MATLAB
    优质
    本研究利用MATLAB开发了一套高效的点云边缘提取算法,适用于三维数据处理和分析,增强了图像识别与建模应用中的细节捕捉能力。 在MATLAB下进行点云边缘提取时,需要将点云数据保存为TXT文件,并将其放在同一目录下运行。
  • 立面线段特征
    优质
    本研究提出一种针对建筑立面点云数据的直线段特征自动提取方法,旨在提高建筑物三维模型重建的精度和效率。 为解决现有从建筑物立面点云数据中检测提取直线段特征方法中存在的严重漏检现象和准确性不足的问题,本段落提出了一种基于切片的建筑物立面点云直线段特征提取方法。首先对建筑物点云的姿态进行调整,使其走向与Y坐标轴一致;然后沿三个坐标轴方向对点云进行切片,并在每个切片上分别提取特征点;之后采用圆柱体生长的方式,在各个方向上的特征点中聚类出潜在的直线段;最后通过残差1范数最小化的方法来拟合这些线性特征,同时调整和优化生成的直线段端点。经过多组实验数据验证,本段落方法能够达到较高的提取精度,即平均为点云中的点间距的一半,并且相较于基于平面分割和图像检测的传统方法,在精确率上提高了2.4%,在召回率上则提升了48.1%。因此,该技术可以更加准确有效地从建筑物立面的点云数据中提取直线段特征。
  • 亚像素和梯
    优质
    本研究专注于提升图像处理技术中的关键步骤——边缘与梯度方向检测,在亚像素级精度上进行优化。通过采用先进的算法和技术手段,使目标识别、特征提取等应用领域受益于更加精确的数据输入。此项工作对于增强计算机视觉系统的性能具有重要意义。 快速提取图像中的亚像素边缘坐标及梯度,用于描述边缘形状,并可用于后续的模板匹配。