Advertisement

精密伺服锻压机双电机同步控制策略解析*(2013年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文深入探讨了精密伺服锻压机中双电机同步控制技术的应用与优化,提出了有效的控制策略,以提高设备的工作精度和效率。 针对新型伺服锻压机在电机精确同步方面的瓶颈问题,引入了双电机交叉耦合同步控制方案。该方案通过比较主、从电机的电流差值作为从电机的附加反馈信号,并根据此信号动态调整从电机的速度,从而提高了同步精度。首先,理论分析对比了命令式双电机同步控制和交叉耦合双电机同步控制两种方案的效果及存在的问题。然后分别采用这两种方案控制锻压机执行相同的工艺曲线,通过实验比较分析了不同方案下的耦合误差以及两台电机的扭矩变化情况。研究结果表明,在紧密配合的情况下,交叉耦合同步控制方案具有更好的性能表现。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • *(2013)
    优质
    本文深入探讨了精密伺服锻压机中双电机同步控制技术的应用与优化,提出了有效的控制策略,以提高设备的工作精度和效率。 针对新型伺服锻压机在电机精确同步方面的瓶颈问题,引入了双电机交叉耦合同步控制方案。该方案通过比较主、从电机的电流差值作为从电机的附加反馈信号,并根据此信号动态调整从电机的速度,从而提高了同步精度。首先,理论分析对比了命令式双电机同步控制和交叉耦合双电机同步控制两种方案的效果及存在的问题。然后分别采用这两种方案控制锻压机执行相同的工艺曲线,通过实验比较分析了不同方案下的耦合误差以及两台电机的扭矩变化情况。研究结果表明,在紧密配合的情况下,交叉耦合同步控制方案具有更好的性能表现。
  • 永磁
    优质
    本文深入探讨了永磁同步伺服电机的多种控制策略,旨在提高其运行效率与稳定性。通过理论分析和实验验证,为该领域的技术优化提供了有价值的参考依据。 随着现代工业的快速发展,精密机床、工业机器人等关键设备对电伺服驱动系统提出了更高的要求。基于正弦波反电动势的永磁同步电机(PMSM)因其卓越性能而逐渐成为电伺服系统的主流选择。在电力电子技术、微电子技术和计算机技术快速发展的背景下,以永磁同步电机为执行机构的交流伺服驱动系统取得了显著进步。 然而,伺服控制技术是决定交流伺服系统性能的关键因素之一,并且也是国外封锁的核心部分。随着国内硬件技术如电机和驱动器等逐步成熟,软件层面的伺服控制技术成为限制我国高性能交流伺服技术和产品发展的主要瓶颈。因此,研究具有自主知识产权的高性能交流伺服控制技术,特别是永磁同步电动机的伺服控制技术,对于理论和技术发展都具有重要意义和实用价值。
  • 永磁系统
    优质
    本研究探讨了永磁同步伺服电机控制系统的先进策略,涵盖位置、速度和转矩控制算法优化。通过模型预测与自适应控制技术的应用,提升系统动态响应及能效,适用于自动化设备中的高精度运动控制需求。 随着国内交流伺服电机及驱动器硬件技术的逐渐成熟,控制芯片中的伺服控制技术已成为制约我国高性能交流伺服技术和产品发展的关键因素。研究具有自主知识产权的高性能交流伺服控制技术,特别是永磁同步电动机的伺服控制技术,不仅具有重要的理论意义,还具备显著的实际应用价值。
  • 永磁PI闭环
    优质
    本研究探讨了针对永磁同步电机的PI控制技术,提出并分析了一种有效的双闭环控制策略,旨在提升电机驱动系统的动态响应与稳定性。 一个可以运行的MATLAB Simulink文件,对于学习电机控制的人来说具有一定的参考价值,并且能够完美运行。
  • Arduino PCA9685多实例
    优质
    本项目演示了如何使用Arduino和PCA9685芯片实现多个伺服电机的精确同步控制,适用于机器人、无人机等需要复杂运动控制的应用场景。 这款产品采用I2C通信,并内置了PWM驱动器以及一个时钟模块,这与TLC5940系列有所不同,因为它不需要持续发送信号来占用单片机资源。 该设备是5V兼容的,这意味着你可以使用3.3V单片机进行控制并且安全地将输出电压提升至6V(例如用于需要较高正向电压如白色或蓝色指示灯的应用)。通过地址选择引脚的设计,最多可以连接62块驱动板在同一个I2C总线上,总共提供992路PWM输出。 这款设备的PWM频率大约为1.6kHz,并且具有可调性。它专门为步进电机准备了12位分辨率的输出,在每秒更新率为60Hz的情况下能达到4us的时间分辨精度。此外,它的输出可以配置成推挽模式或开漏模式。 还有一个输出使能引脚用于快速关闭所有PWM通道的功能需求。需要注意的是OE(Output Enable)引脚必须被拉低以启用功能;或者直接接地来实现相同的效果。 产品特性包括: - PCA9685芯片位于小板中央。 - 提供电源输入端子和绿色的指示灯显示供电状态。 - 设计有四个3针连接器,方便用户一次性插入16个伺服电机(注意:伺服电机插头宽度略大于0.1英寸)以及4对标准0.1英寸接头。 - 板载反向极性保护电路确保电源输入的安全性。 - 级联设计中V+线上配备了一个大电容,以应对特定场景下的需求。外围最大电压受限于一个规格为10V和1000uf的电容器。 - 所有PWM输出线上都设置有一个220欧姆系列电阻器用作保护,并且能够轻易驱动LED等负载元件。
  • 关于偏差耦合的研究
    优质
    本研究聚焦于分析和优化双电机系统中由于元件差异导致的同步控制问题,提出了一种高效的偏差耦合控制策略以实现系统的稳定运行。 摘要:为解决双电机转速同步的问题,本段落提出了一种偏差耦合同步控制策略。该方法采用svpwm变频调速技术对电机进行控制,并通过建立系统仿真模型,在负载干扰的情况下进行了双电机转速的同步仿真实验。使用MATLAB软件完成了系统的仿真实验,结果显示,利用偏差耦合转速补偿的方法能够有效减少两台电机之间的速度差异,从而实现双电机的速度同步控制。 1. 引言 随着工业技术的进步与发展,越来越多的应用场景需要多个电机协同工作来驱动一个或多个工件进行协调控制。传统的控制系统通常依赖单一的电机完成单轴控制任务,而此类系统的输出扭矩受到限制,在传动系统需求大功率时,则需定制与之相匹配的大功率驱动电机和控制器,这不仅增加了成本问题,还带来了其他挑战。
  • 关于偏差耦合的研究
    优质
    本研究聚焦于开发和分析一种新型双电机系统同步控制策略,特别关注电机间的偏差调节与协同工作,以提高系统的稳定性和效率。 针对双电机转速同步的问题,提出了一种偏差耦合同步控制策略。该方法采用svpwm变频调速技术,并建立了系统仿真模型,在负载干扰情况下进行了双电机转速同步仿真实验。通过使用MATLAB软件进行仿真测试,结果表明,利用偏差耦合的转速补偿方式可以显著降低两台电机之间的速度差异,从而实现有效的双电机转速同步控制。
  • 虚拟在不平衡下的功率
    优质
    本研究探讨了虚拟同步发电机在电网不平衡情况下的运行特性,并提出了一种新的功率控制策略以增强其稳定性与性能。 本段落通过对电网电压不平衡情况下虚拟同步发电机输出功率的分析,提出了一种基于静止坐标系的功率控制策略。该方法在不依赖锁相环的情况下,通过负序电压控制分别对有功和无功功率振荡以及三相电流不平衡进行抑制。这一策略不仅确保了虚拟同步发电机电压控制器的电压源特性和惯性特性,还能够使分布式电源根据不同的需求输出恒定的有功、无功功率或平衡的三相电流。 通过使用PSCAD/EMTDC软件仿真和基于RTDS(实时数字仿真系统)的实际物理闭环实验对该控制策略的有效性进行了验证,并对其各项性能指标进行了详细的量化分析。
  • 路PWM180度
    优质
    本产品采用先进的双路PWM控制技术,专为180度旋转范围设计的伺服电机。适用于精密定位需求场景,性能卓越,稳定性强。 舵机在机器人、无人机及遥控模型等领域广泛应用,其工作原理主要依赖于PWM(脉冲宽度调制)信号来控制旋转角度。在这个项目中,我们将使用STM32F103单片机上的一个定时器模块生成两路独立的PWM信号以驱动两个180度舵机,并使它们能够分别转动到指定的角度。 **舵机工作原理:** - 舵机内部包含一个小电机和齿轮组放大扭矩并降低速度,位置传感器(如霍尔效应或光学编码器)监控电机旋转的位置。 - PWM信号的占空比决定了舵机转角大小。较高的PWM信号占空比会导致较大的转动角度。 **PWM生成:** - 在STM32F103单片机中,可以使用内置TIM模块来产生高精度的PWM信号,如高级定时器TIM1和TIM3。 - 需要将定时器模式设置为PWM,并选择适当的预分频值及计数器数值以设定PWM周期。然后通过调整比较寄存器中的值改变每个通道的占空比。 **两路PWM实现:** - 一个定时器可以同时输出多个独立的PWM信号,例如TIM1有四个通道。 - 可设置TIM1_CH1和TIM1_CH2分别对应STM32F103单片机上的A0和A1引脚。通过更改相应的捕获/比较寄存器值来调整占空比。 **角度控制:** - `angle`变量表示目标舵机的角度,需要将该数值转换为PWM信号的相应占空比。 - 可使用线性插值或查找表等方法将给定的角度映射到0~100%之间的占空比范围内。 **编程实现:** - 使用STM32CubeMX工具进行初始化配置并生成HAL库代码,包括定时器和PWM通道的设定。 - 编写C语言程序包含角度更新函数。在主循环中通过调用该函数改变PWM信号以控制舵机转动到指定的角度。 **调试与测试:** - 连接示波器检查输出至舵机的PWM信号是否符合预期,确保其正确性。 - 试验操作舵机并观察实际转角情况,如有偏差需调整算法或硬件连接设置。 **注意事项:** - 舵机的具体响应时间和角度范围可能有所不同,请根据实际情况进行参数调节。 - 必须提供稳定的电源给各个舵机以保证性能稳定。此外,在编写定时器中断服务程序时应小心避免引起系统延迟问题。 该项目涵盖了舵机控制、STM32单片机的PWM配置及角度管理等技术,是嵌入式系统中常见的应用实践之一。通过完成此项目可以深入了解PWM信号的工作原理以及如何在STM32平台上实现精确的角度调整功能。
  • AT89C2051多路
    优质
    本文详细解析了基于AT89C2051单片机的多路伺服电机控制系统的设计与实现,探讨了其硬件结构和软件编程方法。 本段落详细介绍了AT89C2051多路舵机控制电路的工作原理和技术细节。 舵机是一种位置伺服驱动器,在接收特定的PWM信号后会输出相应的角度变化,适用于需要不断改变并保持精确角度控制系统中使用。在微机电系统和航模领域,它是基本的执行机构之一。 其工作流程如下:首先PWM信号通过解调电路BA66881处理得到一个直流偏置电压;然后此电压与电位器产生的参考电压进行比较后输出差值给电机驱动集成电路BA6686;该电路根据输入控制信号调整电机的正反转,直至两者电压相等使得系统稳定。 舵机的核心在于通过PWM(脉宽调制)信号来改变其转角位置。具体来说,这个方波信号周期为20ms,在这期间内高电平部分的时间决定了输出角度大小的变化范围。通常使用单片机构建控制电路以生成所需的PWM信号,并且可以通过编程灵活调整每个通道的占空比。 文中提出了一种基于AT89C2051单片机结合外部振荡器设计多路舵机控制器的方法,其中利用了光耦进行电气隔离避免干扰。该方案中单片机能产生多达八组独立PWM信号供不同轴使用,并通过串行通信接口接受上位机指令以动态调整输出特性。 为了实现多个通道的同步PWM生成,在软件层面可以通过计数器和定时中断方式模拟出锯齿波形,进而与预设的目标值进行比较得到最终需要发送给舵机驱动模块的实际脉宽信号。