Advertisement

基于LSTM神经网络的锂电池SOH估算案例学习(含数据集处理及特征提取代码)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本项目通过运用LSTM神经网络对锂电池健康状态(SOH)进行预测,并详细介绍数据预处理与特征提取方法,附带相关代码实现。 基于LSTM神经网络实现锂电池SOH估计的案例学习(附数据集处理代码与特征提取):使用牛津电池老化数据集及特征工程来建立算法模型(Matlab版)。本案例包括以下步骤: 1. 使用牛津锂离子电池老化数据集,并提供该数据集的预处理代码,以将原始数据重新制表并进行必要的清洗。 2. 提取恒流充电时间、等压升充电时间和极化内阻作为健康状态(SOH)的相关特征变量。 3. 利用LSTM神经网络构建电池的SOH估计模型,其中特征为输入,而预测目标是电池的SOH值。 此外,该案例还提供了将代码修改以使用门控循环单元GRU进行建模的方法。以下是关键概念: - 电池SOH估算案例 - 长短时记忆神经网络LSTM - 锂电池SOH估计算法 - 牛津锂离子电池老化数据集 - 数据集处理代码 - 恒流充电时间 - 等压升充电时间 - 极化内阻 - 特征提取 - LSTM建模 - GRU建模

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LSTMSOH
    优质
    本项目通过运用LSTM神经网络对锂电池健康状态(SOH)进行预测,并详细介绍数据预处理与特征提取方法,附带相关代码实现。 基于LSTM神经网络实现锂电池SOH估计的案例学习(附数据集处理代码与特征提取):使用牛津电池老化数据集及特征工程来建立算法模型(Matlab版)。本案例包括以下步骤: 1. 使用牛津锂离子电池老化数据集,并提供该数据集的预处理代码,以将原始数据重新制表并进行必要的清洗。 2. 提取恒流充电时间、等压升充电时间和极化内阻作为健康状态(SOH)的相关特征变量。 3. 利用LSTM神经网络构建电池的SOH估计模型,其中特征为输入,而预测目标是电池的SOH值。 此外,该案例还提供了将代码修改以使用门控循环单元GRU进行建模的方法。以下是关键概念: - 电池SOH估算案例 - 长短时记忆神经网络LSTM - 锂电池SOH估计算法 - 牛津锂离子电池老化数据集 - 数据集处理代码 - 恒流充电时间 - 等压升充电时间 - 极化内阻 - 特征提取 - LSTM建模 - GRU建模
  • LSTMSOH(利用牛津老化工程), [SOH3]: 应用长短时记忆...
    优质
    本文通过应用长短时记忆(LSTM)神经网络,结合牛津大学提供的电池老化数据和先进的特征工程技术,深入探讨了锂电池健康状态(SOH)的精确评估方法。 基于LSTM神经网络的锂电池SOH估算案例(使用牛津电池老化数据集与特征工程) 1. 使用牛津锂离子电池老化数据集来完成,并提供该数据集的处理代码,该代码可将原始数据集重新制表,处理完的数据非常好用。 2. 提取电池的恒流充电时间、等压升充电时间和极化内阻作为健康特征。 3. 使用LSTM建立锂电池SOH估计模型,以提取出的健康特征为输入,以SOH为输出。 此外,还可以将该代码修改为门控循环单元GRU建模。关键词包括: 电池SOH估算案例;长短时记忆神经网络LSTM;锂电池SOH估计算法;MATLAB编写;牛津锂离子电池老化数据集;数据集处理代码;恒流充电时间;等压升充电时间;极化内阻;健康特征;LSTM建立模型;SOH为输出;GRU建模
  • 卷积(CNN)SOH直接计方法:从原始预测健康状态(SOH)[SOH2]: ...
    优质
    本案例探讨了利用卷积神经网络(CNN)技术,直接从锂电池的原始电压数据中预测其健康状态(SOH),展示了深度学习在电池健康管理中的应用潜力。 基于卷积神经网络(CNN)的锂电池SOH直接估计方法学习案例:从原始电压数据到健康状态(SOH)的预测 使用卷积神经网络(CNN)来搭建电池的SOH估算模型,该模型直接采用电池充电曲线上3.6V开始后的100个电压采样点作为输入,并以SOH为输出。此方法利用原始电压数据进行建模,省去了提取健康特征的过程,从而充分发挥了深度学习的优势。 关键词:电池SOH估算;卷积神经网络(CNN);电压采样点;SOH作为输出;深度学习优势
  • [SOH3]:利用长短时记忆(LSTM)进行状态健康(SOH)评法研究MATLAB实现示
    优质
    本案例通过应用长短时记忆神经网络(LSTM)对锂电池的状态健康(SOH)进行精确评估,并提供了基于MATLAB的具体实现方法。 [电池SOH估算案例3]: 使用长短时记忆神经网络LSTM来实现锂电池SOH估计的算法学习案例(基于matlab编写) 1. 使用牛津锂离子电池老化数据集完成,并提供该数据集的处理代码,该代码可将原始数据集重新制表,处理完的数据非常好用。 2. 提取电池的恒流充电时间、等压升充电时间以及极化内阻作为健康特征。 3. 利用LSTM建立电池SOH估计模型,以提取出的特征为输入,输出电池的状态健康指数(SOH)。 4. 可将该代码修改为使用门控循环单元GRU进行建模。
  • [SOC]:利用Selfattention-LSTM结合多进行SOC法(MATLAB)
    优质
    本研究采用Selfattention-LSTM网络,融合多种特征数据,在MATLAB环境中实现对锂电池状态-of-charge (SOC)的精准估算。 使用Selfattention-LSTM网络进行锂电池SOC估计的算法研究(基于MATLAB编写) 该案例采用了NASA锂离子电池数据集来完成特征提取以及SOH与SOC值的获取。 从NASA的数据集中,我们选取了以下几项作为输入特征:当前放电循环次数、电流测量值、电压测量值、温度测量值、每个测量点之间的时间差和累积放电容量。同时,引入了健康状态(SOH)来辅助预测剩余电量百分比(SOC)。 为了提升模型的性能,本研究构建了一个Selfattention-LSTM网络,并融入多头注意力机制以增强全局特征捕捉能力。用户可根据需要调整注意力机制中的“头数”参数。 该算法适用于MATLAB 2023a及以上版本进行开发和测试。此外,案例中包含了大量的图表数据,非常适合用于科研写作及绘图参考。
  • NASASOC法:结合CNN、Self-Attention和LSTMSOH预测模型
    优质
    本研究提出了一种创新性的电池状态估计方法,利用CNN、Self-Attention及LSTM技术处理NASA公开数据集,实现对锂电池健康状况(SOH)的精准预测。 基于NASA数据集的锂电池SOC估计算法:采用CNN-Selfattention-LSTM多特征联合SOH预测模型 使用NASA锂离子电池数据集来完成特征、SOC及SOH提取,该算法旨在通过结合多种特性实现对锂电池剩余电量百分比(SOC)的有效估计。具体而言,所使用的数据包括当前放电循环次数、放电过程中记录的电流值、电压值和温度值以及每个测量点之间的时间差等信息,并进一步考虑了每一轮次电池健康状态SOH的影响。 为了提升模型性能,在设计中引入了CNN-Selfattention-LSTM架构并加入多头注意力机制,该方法能够增强对全局特征的关注能力。此外,研究采用的Matlab版本为2023a或更新版以确保代码兼容性和执行效率。 此项目包含大量图表和可视化结果,非常适合于学术研究与论文撰写中的数据展示需求。
  • (深度
    优质
    特征提取是深度学习和神经网络中的关键技术,通过多层抽象化处理原始数据,自动识别对分类或预测任务有用的特征,提升模型性能。 欢迎交流讨论深度学习的实现及代码细节方面的内容。如果有任何疑问或需要进一步探讨的地方,请随时提出。
  • 离子SOH预测中RNN、LSTM与GRU应用——NASA深度Python实现策略
    优质
    本研究探讨了在锂离子电池状态健康(SOH)预测中,应用递归神经网络(RNN)、长短期记忆(LSTM)和门控循环单元(GRU)的效果,并通过Python编程实现了基于NASA数据集的深度学习模型。 本段落探讨了在锂离子电池健康状态(SOH)预测中的深度学习方法应用,特别是循环神经网络(RNN)、长短期记忆网络(LSTM)以及门控循环单元(GRU)。研究基于NASA提供的数据集,并通过Python代码实现策略进行分析。文章详细介绍了这些模型如何利用深度学习技术对锂离子电池的SOH进行预测,并展示了使用NASA数据集和不同神经网络架构的具体实施方法。
  • qqwwd_floorrbc_卷积_
    优质
    本研究探讨了利用卷积神经网络进行高效特征提取的方法,旨在提高图像识别与分类任务中的性能表现。通过深度学习技术的应用,优化模型结构以适应多样化的数据集需求。 使用Matlab编程提取图片中的文字可以达到较好的效果。