Advertisement

ORB-SLAM2论文的原始文章

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《ORB-SLAM2: 即时定位与地图构建》是一篇关于视觉SLAM领域的开创性论文,提出了一种高效鲁棒的单目、 stereo及RGB-D SLAM系统,适用于多种环境和应用。 ORB-SLAM2是一个用于视觉SLAM三维建图的开源项目,提供了详细的程序算法及论文,为学习相关算法提供了很好的指导。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ORB-SLAM2
    优质
    《ORB-SLAM2: 即时定位与地图构建》是一篇关于视觉SLAM领域的开创性论文,提出了一种高效鲁棒的单目、 stereo及RGB-D SLAM系统,适用于多种环境和应用。 ORB-SLAM2是一个用于视觉SLAM三维建图的开源项目,提供了详细的程序算法及论文,为学习相关算法提供了很好的指导。
  • ORB-SLAM2ORB-SLAM3详尽中注释版.zip
    优质
    本资源提供ORB-SLAM2和ORB-SLAM3视觉SLAM系统代码的详细中文注释,帮助开发者深入理解其工作原理和技术细节。 ORB-SLAM 是一个完整的 SLAM 系统,涵盖视觉里程计、跟踪以及回环检测功能,并且完全基于稀疏特征点的单目 SLAM 方法。它还支持单目相机、双目相机及 RGBD 相机接口。资源包括 ORB-SLAM2 和 ORB-SLAM3 的详细中文注释版本源码。
  • ORB-SLAM2源码解析中版.pdf
    优质
    本书《ORB-SLAM2源码解析中文版》深入剖析了SLAM领域的经典开源项目ORB-SLAM2的源代码,旨在帮助读者全面理解其背后的算法原理与实现细节。适合计算机视觉和机器人技术领域的研究人员及工程师阅读学习。 东北大学吴博讲解ORB_SLAM的文档仅有文档内容。
  • ORB-SLAM2思维导图
    优质
    ORB-SLAM2思维导图旨在通过可视化方式解析和归纳ORB-SLAM2视觉同时定位与地图构建系统的架构、流程及关键技术,便于学习与应用。 ORB-SLAM2代码阅读思维导图使用xmind8编辑,可以使用xmind8或xmind zen打开。这是我自行制作的思维导图,可能存在一些错误。作为我接触的第一个比较大的SLAM系统和C++项目,建立这个思维导图有助于加深对系统的理解,并且对我学习ORB-SLAM2提供了极大的帮助。
  • ORB-SLAM2 代码详解
    优质
    《ORB-SLAM2 代码详解》是一份深入解析ORB-SLAM2视觉SLAM系统的文档,详细介绍了其核心算法和源码结构。适合研究与开发者参考学习。 参考这篇文章制作的PDF文件提供了详细的讲解内容。对于视频教程部分,请参见相关视频页面。 由于您要求去掉链接并保留核心意思,所以这里不再提供具体链接地址。希望这样能满足您的需求。如果有其他问题或需要进一步的信息,欢迎随时提问。
  • 基于VS2017ORB-SLAM2工程
    优质
    本项目是基于Visual Studio 2017环境下的ORB-SLAM2视觉SLAM系统工程实现。它集成了最新的计算机视觉技术,适用于机器人自主导航和增强现实等领域。 这是我配置的Windows版本ORB-SLAM2,在Visual Studio 2017环境下编译。所有第三方依赖库(包括OpenCV)都已部署在工程目录下,并且属性表路径和运行环境均已设置为相对路径,可以直接打开并编译运行。如果有问题,请在我的博客留言反馈。
  • ORB-SLAM2源码解析.pdf
    优质
    《ORB-SLAM2源码解析》深入剖析了基于ORB特征的实时单目SLAM系统ORB-SLAM2的代码细节与工作原理,适合计算机视觉领域的研究人员和开发者阅读。 《ORB-SLAM2源码详解》由信息科学与工程学院人工智能与机器人研究所的吴博编写,详细解析了ORB-SLAM2的关键源代码。本段落将介绍该系统的代码架构、变量命名规则以及三个主要线程的工作机制:跟踪(Tracking)、局部映射(LocalMapping)和闭环检测(LoopClosing)。 在代码中,指针类型的变量通常以“p”开头,整型则用“n”,布尔类型为“b”,集合使用“s”表示,向量采用“v”,列表则是“l”。类成员变量直接命名。系统入口函数包括GrabImageStereo、GrabImageRGBD和GrabImageMonocular,这些根据不同的相机输入(如立体相机、RGB-D相机或单目相机)进行预处理操作。 Tracking线程负责处理帧数据流并初始化相机位姿;它通过调用StereoInitialization 或 MonocularInitialization函数执行初始位姿跟踪。在该过程中使用TrackWithMotionModel、TrackReferenceKeyFrame和Relocalization等函数来完成跟踪任务。当mbOnlyTracking设置为true时,系统仅进行追踪定位而不插入新关键帧或更新局部地图;否则会通过UpdateLocalMap、UpdateLocalKeyFrames及 UpdateLocalPoints操作更新局部地图,并使用SearchLocalPoints获取当前帧与该地图的匹配信息。 在LocalMapping线程中,处理新的关键帧并优化这些关键帧及其关联的地图点。此外,它还会检查相邻的关键帧间是否存在重复的地图点并通过局部束调整(BA)来改进它们之间的关系;同时剔除那些大部分地图点可被其他共视关键帧观测到的关键帧。 LoopClosing线程执行闭环检测功能:从mlpLoopKeyFrameQueue队列中取出一帧作为mpCurrentKF,并检查与上一次检测的时间间隔是否超过10帧。随后,计算当前帧与其他相连关键帧的Bow(Bag of Words)最低得分以选择候选的闭环匹配;通过分组和连续性检测来剔除单独得分高但无匹配的关键帧并确认其连续性;若符合要求,则认为存在闭环。 该文档虽为OCR扫描生成,可能包含一些识别错误,但仍提供ORB-SLAM2算法的具体实现细节。了解这些内容有助于读者深入理解系统运作机制,并在实际应用中进行调整和优化。
  • SuperGlue
    优质
    《SuperGlue:学习鲁棒匹配的即插即用对比模块》是一篇开创性的计算机视觉领域论文,提出了一种新型对比模块SuperGlue,用于提升图像和视频中特征点配准的准确性和稳定性。 ### SuperGlue:基于图神经网络的学习特征匹配 #### 关键知识点概述 1. **SuperGlue架构**:SuperGlue是一种神经网络架构,旨在通过联合寻找对应点并拒绝不匹配的点来实现两组局部特征之间的匹配。 2. **最优传输问题**:该方法通过对可微分的最优运输问题求解估计分配,并且成本由图神经网络预测得出。 3. **注意力机制**:SuperGlue采用了基于注意力的灵活上下文聚合机制,使得模型能够联合推理底层三维场景和特征分配的情况。 4. **学习几何变换**:与传统方法相比,SuperGlue通过端到端训练从图像对中直接学习几何变换先验以及3D世界的规律性结构。 5. **应用场景**:在姿态估计任务上表现出色,在具有挑战性的现实世界室内及室外环境中取得了最先进的成果。 #### 核心知识点详解 ##### SuperGlue架构 SuperGlue的核心在于其独特的神经网络设计,它不同于传统方法只是改进特征提取或匹配策略。相反,它是直接从现有的局部特征中学习如何进行匹配的过程。这种端到端的学习方式使SuperGlue能够在各种视觉环境中有效工作,尤其是在存在较大视点变化、遮挡、模糊和缺乏纹理的情况下。 ##### 最优传输问题 SuperGlue通过求解一个最优运输问题来估计特征间的对应关系。这个问题是通过对传统线性分配问题进行微分松弛实现的,这样可以在反向传播过程中更新网络参数。成本函数由图神经网络预测得出,这使得SuperGlue能够根据特定任务需求动态调整匹配标准。 ##### 注意力机制 SuperGlue的一个关键创新在于其基于注意力的上下文聚合机制。这种机制借鉴了Transformer模型的思想,并使用自我(图像内)和交叉(图像间)注意来利用关键点的空间关系及其视觉外观。这样的注意力机制增强了预测分配结构,同时能够处理遮挡和不可重复的关键点情况,从而产生更稳定且准确的匹配结果。 ##### 学习几何变换 SuperGlue通过大量标注数据学习姿态估计先验知识,这使得网络能更好地理解并推理3D场景以及特征分配。这种端到端的学习方法不仅提高了匹配精度,还使SuperGlue能够适应各种多视图几何问题,如同步定位与地图构建(SLAM)、运动结构重建等。 ##### 应用场景和优势 在具有挑战性的现实世界环境中,特别是在复杂室内及室外场景中,SuperGlue展现出了卓越的能力。与其他学习或手工制作的方法相比,在存在视角变化、光照条件变化和其他困难情况时,它提供了更准确的姿态估计结果。此外当与深度前端SuperPoint结合使用时,SuperGlue在姿态估计任务上达到了最先进的水平,并为端到端的深度SLAM发展铺平了道路。 ##### 结论 SuperGlue是一种基于图神经网络的学习特征匹配方法,通过新颖的注意力机制和最优传输问题解决方案有效解决了特征匹配中的关键挑战。这种方法不仅提升了匹配准确性,还使SuperGlue能够应用于各种复杂的多视图几何问题,并为未来计算机视觉领域的研究提供了强大的工具和支持。