Advertisement

MEMS技术应用于智能硅压阻汽车压力传感器。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
摘要:本文详细阐述了一种全新的设计方案,该方案融合了微机电系统(MEMS)技术以及智能集成化信号调理技术,旨在制造适用于大规模生产的、小型化且坚固的通用汽车压力传感器。通过运用智能调理技术,对传感器的零点和满量程值进行了温度补偿,从而实现了在宽温度工作范围内具备高精度测量的能力,并且该设计方案特别适合于批量生产的需求。0 引言 随着汽车性能的持续进步,得益于汽车电子技术的不断发展和完善。在众多汽车电子元件中,传感器无疑是具有代表性的关键部件。传感器负责将各种物理信号转换成电信号,并将车辆行驶的具体状态传递给电子控制单元,从而实现对汽车的精确控制。在电子技术蓬勃发展的今天,作为汽车电子系统的核心组成部分,传感器受到了越来越多的关注。美国汽车传感器领域的权威机构弗莱明在2000年发布的关于汽车电... 的报告表明...

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MEMS
    优质
    本研究聚焦于利用微机电系统(MEMS)技术开发先进的智能硅压阻汽车压力传感器,旨在提升汽车系统的性能与安全性。通过集成创新结构设计和信号处理算法,该传感器能实现高精度、快速响应的压力测量,广泛适用于车辆的多种应用场景中。 本段落介绍了利用MEMS(微机电系统)技术制造的硅压阻力敏元件,并结合智能集成化信号调理技术设计出适合批量生产的、小型且坚固封装的通用汽车压力传感器。通过智能调理技术对传感器进行温度校准,确保其在宽温工作范围内实现高精度测量,同时满足大规模生产的需求。 引言指出,在当今时代,随着汽车性能不断提升的背后是汽车电子行业的快速发展。其中最为关键的部分之一便是各种类型的传感器。这些元件能够将物理信号转换为电信号,并传递给车辆的控制单元以调控汽车运行状态。因此,作为现代汽车中不可或缺的关键组件,在当前科技迅猛发展的背景下显得尤为重要和备受关注。美国著名汽车传感器专家弗莱明曾于2000年指出这一趋势的重要性。
  • MEMS式加速度设计
    优质
    本研究探讨了采用MEMS技术设计并制造硅微压阻式加速度传感器的方法与过程,旨在提升传感器性能和应用范围。 本段落以双端固支式硅微加速度传感器为研究对象,利用Aasys软件对其性能进行了仿真分析,并介绍了基于MEMS技术的硅微压阻式加速度传感器的设计。
  • 变送:扩散
    优质
    本文章深入探讨了扩散硅技术在压力传感器和压力变送器中的应用,详细分析其工作原理、性能特点及行业应用前景。 压力传感器(包括压力变送器和扩散硅压力传感器)采用带不锈钢隔离膜的扩散硅压阻式元件进行信号测量。其内置的专业信号处理电路位于坚固的不锈钢壳体内,将原始信号通过特定调理转换为标准4-20mA电流或RS485数字信号输出。 DATA-52系列的压力传感器经过了长期的老化和稳定性测试等严格工艺流程,确保产品性能稳定可靠。因此,它们被广泛应用于石油、化工、冶金及电力等行业中的现场测量与控制系统中。
  • 在TPMS无线节点中的设计*(2011年)
    优质
    本文介绍了采用硅压阻技术的压力传感器在轮胎压力监测系统(TPMS)无线传感节点上的应用设计,探讨了其性能优化和实际测试结果。 针对量程在800kPa以上的进口TPMS传感器芯片价格昂贵与目前大客/货车安装胎压监测系统必要性之间的矛盾问题,本段落提出了一种基于TI公司MSP430F2112处理器的高性价比TPMS无线传感器节点设计方案。该方案涵盖了总体设计思路、压力传感器非线性补偿算法、详细的硬件配置以及软件控制策略。 实验测试结果显示:本设计方案中的硬件电路及补偿计算方法相对简单;能够显著改善压力传感器的热灵敏度特性;系统具备可靠的无线通信性能和灵活的组态设置选项;同时,该方案实现了低功耗、小体积与轻量化设计,性价比合理。因此,这种TPMS无线传感器节点具有广阔的应用前景。
  • MEMS式加速度设计PPT课件.pptx
    优质
    本PPT课件详细介绍了基于MEMS技术的硅微压阻式加速度传感器的设计原理与制作工艺,涵盖传感器的工作机制、性能参数及应用领域。 基于MEMS的硅微压阻式加速传感器设计PPT课件介绍了利用微机电系统(MEMS)技术开发的一种新型加速度传感器的设计思路与实现方法。该传感器采用硅材料,通过压阻效应来感知外界施加的力,并将其转换为电信号输出。这种设计不仅提高了传感精度和稳定性,还具有体积小、重量轻等优点,在多种应用场景中展现出广阔的应用前景。
  • 51单片机的中的
    优质
    本项目介绍了一种以51单片机为核心,应用于测量与控制领域的智能压力传感器的设计与实现。该传感器结合现代传感技术和微处理器技术,在工业自动化、医疗设备及环境监测等领域具有广阔的应用前景。 在现代科技领域里,传感器技术变得越来越重要。本段落主要探讨了51单片机在智能压力传感器设计中的应用及其发展的影响。研究的重点在于提升智能压力传感器本身的稳定性,并通过结合使用51单片机与压力传感器来增强其抗干扰能力,从而推动了压力传感器的智能化和标准化进程。 0 引言 目前所有兼容Intel 8031指令系统的单片机被统称为51单片机。Intel公司的8031单片机是51系列中的始祖机型之一,并且它是当前应用最为广泛的八位单片机之一。随着Flash rom技术的进步,该类芯片得到了持续的发展,在工业测控系统中获得了广泛的应用。ATMEL公司推出的AT89系列产品就是基于Intel 8031架构的优秀代表。
  • 详解MEMS的原理及
    优质
    本文深入解析MEMS(微机电系统)压力传感器的工作原理,并探讨其在医疗、汽车和消费电子等领域的广泛应用。 ### MEMS压力传感器原理 MEMS(微电子机械系统)是一种集成微型传感器、执行器、信号处理电路、接口电路、通信及电源的高科技产品。该技术结合了多种微细加工技术和现代信息技术,涵盖了如压力传感器、加速度计和微陀螺仪等组件。随着MEMS技术的进步,预计未来五年内销售额将以年均18%的速度增长,这为相关学科的发展带来了机遇与挑战。 ### 硅压阻式压力传感器 硅压阻式压力传感器基于在硅片上制造的微机械电子器件。它采用了由高精度半导体电阻应变片构成的惠斯顿电桥作为力-电转换器,具有高精度、低功耗和低成本的优点。当没有外部压力变化时,输出电压为零且几乎不消耗电力。传感器的核心是惠斯顿电桥(如图1所示),其中应变片电桥被刻制在硅片表面应力最大的位置(如图2所示)。传感器结构由上下两层玻璃体及中间的硅片构成(如图3所示),通过MEMS技术直接将压力转换为电信号,精度可达0.01-0.03%FS。当外部压力作用于引压腔并通过应力杯使硅薄膜产生微小变形时,应变片电阻随之变化,并改变电桥输出电压与压力成正比。 ### 电容式压力传感器 电容式压力传感器利用MEMS技术在硅片上制作横隔栅以形成两个平行的板(如图5所示),当受到外部力的作用时,其中一个板向下移动从而改变了两板之间的距离,进而改变电容器的电容量,实现将压力变化转换为电信号。该类型的压力传感器常应用于汽车电子、消费电子产品和工业设备等领域。 ### 应用领域 MEMS压力传感器广泛用于包括轮胎气压监测系统(TPMS)、发动机机油压力传感器在内的多种汽车电子应用;以及胎压计、血压计等家用及医疗健康类产品,同时也被用于洗衣机中的液位控制。此外,在工业自动化中也有广泛应用如数字式流量表和配料称重设备。 ### 生产与销售链 MEMS压力传感器的生产流程包括设计、制造和销售三个环节。通常情况下可以使用集成电路4寸晶圆生产线进行制造,并添加特定于MEMS工艺所需的额外生产设备,例如双面光刻机以及湿法腐蚀台等工具。完成管芯(die)的设计后,可将其封装成独立产品或与仪表放大器及ADC一起集成在一个多芯片模块中以简化最终产品的设计和使用。 ### MEMS与IC的区别 在设计方面,MEMS更注重三维动态机械结构的构建而IC则主要集中在二维静态电路布局上。此外,在工艺过程中尽管两者会共享许多技术但MEMS还需要一些特殊的处理步骤如双面刻蚀及光刻等以满足其特定需求。对于封装而言由于尺寸小且内部构造复杂因此对精度和可靠性要求极高,这使得IDM(垂直整合制造)模式在生产此类产品时更为合适因为它能够更好地协调设计、工艺以及生产的各个环节。
  • 电路设计
    优质
    本项目聚焦于压阻式压力传感器的工作原理及其应用,深入探讨其内部结构和特性,并提供实用的应用电路设计方案。 ### 压阻式压力传感器及其应用电路设计 #### 一、引言 随着现代工业技术的发展,压力传感器作为重要的传感设备,在各个领域发挥着关键作用。本段落将详细介绍压阻式压力传感器的工作原理及相关应用电路的设计,并通过一个具体的应用案例进行说明。 #### 二、压阻式传感器概述 压阻式传感器是一种能够将机械应变转化为电阻值变化的传感器。其基本工作原理是基于半导体材料的压阻效应,即在外力作用下,半导体材料的电阻率发生变化。这一特性使得压阻式传感器能够在各种恶劣环境下保持稳定的工作性能。 #### 三、压阻式传感器的工作原理 ##### 3.1 半导体材料的压阻效应 压阻式传感器的核心在于利用半导体材料(通常是单晶硅)的压阻效应。当半导体材料受到外力作用时,其内部的电子结构会发生变化,从而导致电阻率的变化。这一变化可以通过公式表示: \[ \frac{\Delta R}{R} = \alpha \cdot \epsilon \] 其中,\(\frac{\Delta R}{R}\) 表示电阻的相对变化量;\(\alpha\) 是压阻系数;\(\epsilon\) 是材料的应变(长度的相对变化量)。压阻系数 \(\alpha\) 和材料的弹性模量 \(E\) 有关,可以表示为 \(\alpha = -\frac{\pi E}{(1+\nu)(1-2\nu)}\) ,其中 \(\nu\) 是泊松比。 ##### 3.2 应变片的应用 为了将非电量如压力、力或加速度等转换成电信号,通常需要在弹性元件上贴附应变片。当这些物理量作用于弹性元件时,会使弹性元件发生形变,进而产生应变。应变片会将这一应变转化为电阻值的变化,通过这种方式实现非电量到电量的转换。 #### 四、压阻式传感器的应用电路设计 ##### 4.1 供电电路 压阻式传感器可以采用恒压源供电,也可以采用恒流源供电。恒压源供电方式简单,但在温度变化较大的环境中可能会对测量结果产生影响。相比之下,恒流源供电方式可以有效减少温度变化带来的影响。 ##### 4.2 桥式电路的应用 为了提高测量精度,通常采用惠斯通电桥(Wheatstone Bridge)作为压力传感器的检测电路。电桥由四个电阻组成,其中两个电阻作为固定参考电阻,另外两个电阻则作为感压元件。当压力作用于传感器时,感压元件的电阻值会发生变化,导致电桥不平衡,从而产生输出电压。输出电压与压力成正比关系,可以用来精确地测量压力的大小。 #### 五、应用实例 假设有一个压阻式压力传感器用于监测管道中的气体压力。该传感器采用恒流源供电方式,并通过惠斯通电桥来提高测量精度。当管道中的气体压力发生变化时,传感器中的应变片随之产生应变,进而引起电阻的变化。通过测量电桥输出电压的变化,即可得到管道内气体压力的具体数值。 #### 六、总结 压阻式压力传感器因其简单可靠的结构、良好的稳定性以及广泛的适用范围,在众多压力传感器中脱颖而出。通过合理的电路设计,可以进一步提高其测量精度和稳定性。未来,随着材料科学和技术的进步,压阻式压力传感器将在更多领域发挥重要作用。
  • MPM388.pdf
    优质
    本PDF文档详细介绍MPM388压阻式压力传感器的技术参数、应用场景及使用方法,适用于工业自动化、医疗设备等领域。 MPM388型压阻式压力传感器是一款高性能的压力检测设备。
  • 系统设计
    优质
    本项目旨在开发一种创新性的压力传感系统,运用先进的人工智能算法和传感器技术,实现对复杂环境下的精确压力监测与分析。 本段落设计了一种以C8051F410微处理器为核心的智能压力传感系统。该系统采用压阻式压力传感器,并通过恒流源电路、差动放大电路以及高性能集成温度传感器DS18B20来减小环境因素(如温度变化)对传感器的影响。 智能压力传感技术在监测和分析各种环境中机械系统的压力状态方面具有重要作用。本段落设计的基于C8051F410微处理器的压力传感系统,采用压阻式压力传感器以提高测量精度与稳定性。C8051F410是一款高性能的8位微控制器,内含A/D转换器和丰富的I/O接口,非常适合实时数据处理及控制。 压阻式压力传感器利用半导体材料在受力时电阻变化的特点来工作;其优点包括高灵敏度、快速响应以及精确测量。然而,温度变化会导致输出信号漂移,影响准确性。为解决此问题,系统采用了恒流源电路以确保输出电压与温度无关,并通过差动放大电路(由AD522单片放大器构成)来增强微弱信号的放大效果和共模干扰抑制能力。 此外,高性能集成温度传感器DS18B20用于监测环境温度并为软件补偿提供数据。C8051F410处理器对压力传感器输出进行采样处理,并结合DS18B20提供的温度信息执行误差修正及非线性校正以提高测量精度。 该系统配备RS-232通信接口,遵循MODBUS协议与上位机通讯,支持实时数据传输和远程监控。用户可通过键盘操作控制系统并通过显示设备查看结果。软件模块包括初始化、A/D转换器校准以及零点漂移补偿等功能,确保了系统的稳定运行及高效的数据处理。 综上所述,此智能压力传感系统结合硬件电路设计与软件算法优化,在实际应用中有效解决了压阻式传感器的温度漂移问题,并提升了其在多种环境条件下的测量精度和抗干扰能力。该技术具有广泛的应用潜力,特别是在控制类项目中的表现尤为突出。