Advertisement

该文件包含STM32F10X微控制器中TIM2定时器的通用配置信息,用于定时功能。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
STM32F10X微控制器中的TIM2和TIM5模块,作为通用定时器,提供了完善的定时功能示例代码,经过严格测试,确认其稳定可靠运行。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 1-STM32F10X-TIM2-5_.zip
    优质
    本资源为STM32F10X系列微控制器TIM2和TIM5通用定时器的使用示例代码及配置,适用于需要精确时间控制的应用场景。 STM32F10X-TIM2-5通用定时器定时例程源码,亲测可用。
  • NUCLEO-L432KCTIM2(STM32L432KC)
    优质
    本项目旨在介绍如何在STM32L432KC微控制器开发板上使用HAL库配置TIM2定时器,适用于嵌入式系统时序控制需求。 本段落介绍了一个代码相关的博客文章的内容概要,并提供了详细的步骤和技术细节来帮助读者理解和实现相关功能。通过遵循文中提供的指导,开发者可以更有效地解决特定编程问题或优化现有项目中的技术方案。
  • STM32-基本
    优质
    本篇文章详细介绍了STM32微控制器中通用定时器的基础使用方法及其实现基本定时功能的具体步骤和技巧。 STM32的Timer简介;普通定时器TIM2-TIM5;程序源代码 本段落将介绍STM32微控制器中的定时器模块,并重点讨论普通定时器TIM2到TIM5的功能及其应用,同时提供相关程序源代码供参考。
  • 3 - STM32F10X-TIM2-5 输入捕获 脉冲宽度测量.zip
    优质
    本资源为STM32F10X系列微控制器的应用程序示例,专注于使用TIM2至TIM5通用定时器进行输入捕获和脉冲宽度测量。适合学习嵌入式系统开发中的计时功能应用。 STM32F10X-TIM2-5通用定时器输入捕获测量脉冲宽度例程源码,亲测可用!
  • ProteusSTM32TIM2流水灯闪烁仿真
    优质
    本项目利用Proteus软件实现基于STM32微控制器的定时器TIM2与中断机制控制LED灯按设定时间间隔闪烁的仿真,验证了硬件电路及程序设计的有效性。 本次实验在前两次的基础上稍作调整:使用TIM2定时器中断来控制LED流水灯的闪烁时间,并新增了两个按键PA1、PA2。其中,PA1用于启动LED流水灯的功能,使8个灯依次以一秒的时间间隔进行闪烁;随后所有灯光同时开始每秒一次的闪烁模式。而PA2则起到停止作用,即关闭定时器功能并保持当前状态不变。 实验所需配置可以在Proteus软件中完成,并且整个过程操作简便快捷,只需几分钟即可掌握。对于前两次的相关内容,请参考之前的“实验一”和“实验二”,这两个项目包含了关于Keil及Proteus的完整工程文件以及详细的步骤说明。
  • GD32F405RGT6库(12个
    优质
    本固件库专为STM32 GD32F405RGT6设计,提供全面配置其内部12个定时器的功能。简化复杂时序控制与系统同步操作,助力高效开发与应用优化。 通常我们根据定时器的功能及类型来选择合适的定时器,在这次针对GD单片机的操作中,我对其所拥有的12个定时器进行了全面的梳理。对于通用定时器以及高级定时器,我都配置成了PWM输出模式;其他功能的配置将在后续持续更新。
  • STM32CubeMX 实验03:使2LED闪烁
    优质
    本实验通过STM32CubeMX配置开发环境,利用STM32微控制器上的通用定时器2生成中断,以此实现LED灯的定时闪烁功能。演示了如何结合硬件与软件资源进行基本的嵌入式系统编程实践。 STM32CubeMX 实验03 使用通用定时器2通过定时中断控制LED闪烁。
  • STM32
    优质
    简介:本文详细讲解了如何在STM32微控制器中配置定时器中断,包括定时器的基础知识、所需库函数以及具体的配置步骤和代码示例。 STM32是一款基于ARM Cortex-M内核的微控制器,在嵌入式系统设计中有广泛应用。在STM32中,定时器是重要的硬件资源之一,用于执行各种时间相关的任务,如周期性操作、延迟以及脉冲宽度调制(PWM)等。 本教程将详细介绍如何配置STM32的基本定时器TIM6和TIM7,并讲解设置它们以固定时间后溢出并触发中断的方法。 **1. TIM6和TIM7概述** TIM6与TIM7是STM32中的基本定时器,主要用于简单的计数功能。相较于高级定时器,这些定时器没有PWM或捕获比较通道等特性。它们通常用于执行固定的周期性任务,比如系统时钟同步或者简单的延时操作。 **2. 配置步骤** 配置STM32的基本定时器主要包括以下几个步骤: - **启用时钟**: 你需要在RCC(复用重映射和时钟控制)寄存器中开启TIM6或TIM7的时钟。这可以通过修改对应的使能位来实现,例如`RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE);` - **预分频器配置**: 预分频器决定了定时器时钟频率与计数器频率之间的关系。你可以通过函数如`TIM_PrescalerConfig()`设置预分频值,这将影响定时器的分辨率和精度。 - **计数模式设置**: STM32定时器支持多种计数模式(向上、向下或中心对齐等)。对于TIM6和TIM7来说,通常使用向上计数模式。可以通过`TIM_TimeBaseInitTypeDef`结构体中的字段如`TIM_CounterMode`来设定此选项。 - **自动重载值设置**: 定义定时器的自动重加载值,即溢出时的计数值。例如,若希望定时器在1秒后溢出,则需要计算合适的重载值并使用函数如`TIM_ARRPreloadConfig()`进行配置。 - **初始化定时器**:通过调用`TIM_TimeBaseInit()`等函数将上述设置写入到相应的寄存器中完成初始化操作。 - **中断使能**: 若需在溢出时触发中断,需要开启中断功能。这可以通过如`TIM_ITConfig(TIM6, TIM_IT_Update, ENABLE);`的语句实现,并启用TIM6的更新中断。 - **启动定时器**:使用函数如`TIM_Cmd()`来启动定时器,例如`TIM_Cmd(TIM6, ENABLE);` **3. 中断服务程序(ISR)** 当定时器溢出时,STM32将触发一个中断。你需要为此编写中断处理代码,在ISR中可以执行诸如清零计数器、更新标志位或完成其他系统任务的操作。 **4. 示例代码** ```c #include int main(void) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; // 启用GPIOA和TIM6的时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE); // 配置PA0为输出模式 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); // 初始化TIM6定时器 TIM_TimeBaseStructure.TIM_Period = 1000; // 假设系统时钟为72MHz,设置溢出时间为1秒 TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM6, &TIM_TimeBaseStructure); // 开启定时器更新中断 TIM_ITConfig(TIM6, TIM_IT_Update, ENABLE); // 启动定时器 TIM_Cmd(TIM6, ENABLE); while (1) ; } // 定时器溢出处理函数 void TIM6_IRQHandler(void) { if(TIM_GetITStatus(TIM6,TIM_IT_UPDATE)!= RESET) { GPIO_WriteReverse(GPIOA); TIM_ClearITPendingBit(TIM6, TIM_IT_Update); // 清除中断标志位 } } ``` 以上是关于STM32基本定时器TIM6和TIM7的配置方法,以及如何在溢出时触发中断的具体步骤。通过这样的设置可以为你的应用创建各种基于时间的任务。
  • STM32CubeMX基本
    优质
    本教程介绍如何使用STM32CubeMX工具便捷地配置STM32微控制器的基本定时器,帮助初学者快速掌握该过程。 在本次实验中,对基本定时器6进行了初始化配置,周期设置为500毫秒。这意味着每过500毫秒会发生一次溢出,并触发一个上溢事件,在回调函数里执行LED灯的翻转操作。因此,观察到的现象是每隔500毫秒LED灯就会切换一次状态。