Advertisement

月球着陆器自动驾驶系统在Simulink仿真环境中进行模拟。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
月球登陆器采用自动驾驶仪的仿真系统,基于Simulink平台进行开发。该仿真系统旨在模拟月球登陆器的自主导航和控制过程,为实际飞行测试提供可靠的验证手段。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 主导航Simulink的实现
    优质
    本研究探讨了利用Simulink软件对月球着陆器的自主导航系统进行建模与仿真,旨在验证算法的有效性并优化其性能。 月球登陆器自动驾驶仪仿真Simulink
  • Python-OpenAIGym小车
    优质
    本项目构建于Python与OpenAI Gym框架之上,旨在创建一个高度仿真的自动驾驶汽车模拟环境,便于算法测试与优化。 OpenAI Gym提供了一个自驾小车的模拟环境。
  • 的MATLAB仿分析
    优质
    本研究通过MATLAB进行月球软着陆过程中的关键参数及控制策略仿真分析,评估不同条件下的着陆精度与安全性。 建立了简单登月艇软着陆过程的模型,并通过MATLAB进行了仿真。
  • 感知PPT——出列丛书
    优质
    本PPT源自《自动驾驶系列丛书》,聚焦于自动驾驶技术中的环境感知模块,深入浅出地介绍了传感器融合、目标识别与追踪等关键技术。 自动驾驶是当前科技领域的重要研究方向之一,其核心技术之一便是环境感知技术。“自动驾驶系列丛书-自动驾驶环境感知ppt”专注于这一关键领域,深入探讨了如何使车辆能够理解和解析其所处的复杂交通场景,以实现安全高效的行驶。 环境感知是自动驾驶的基础。它包括视觉识别、雷达探测、激光雷达(LiDAR)扫描、超声波传感器以及惯性测量单元(IMU)等多种技术和子系统。这些技术结合使用可以实时收集周围的信息,并构建高精度的环境模型。 1. 视觉识别:基于摄像头的数据处理,能够识别道路标志、行人和其他车辆等元素,通过图像处理和深度学习算法实现物体检测与识别。例如,卷积神经网络(CNN)在图像识别中的应用使得车辆能理解并应对各种交通场景。 2. 雷达探测:利用雷达信号来测量物体的距离、速度和方向,在雨雪天气或夜间也能提供可靠信息。结合视觉信息可以增强环境感知的准确性。 3. 激光雷达(LiDAR):通过发射激光束并计算反射时间,创建高分辨率的三维点云地图,精确描绘周围环境,并为路径规划及避障决策提供关键数据。 4. 超声波传感器:用于近距离探测如停车辅助系统中测量车辆与障碍物之间的距离。 5. 惯性测量单元(IMU):监测加速度和角速度变化情况,结合全球定位系统(GPS)信息进行姿态估计及导航支持。 环境感知技术并非单一传感器的应用,而是多传感数据融合的结果。通过整合不同传感器的数据优势来提升整体感知的准确性和可靠性。此外,高精度地图与实时定位也是关键组成部分,它们为车辆提供全局位置和路径规划依据。 在自动驾驶系统的开发过程中,除了要解决技术难题外还需满足严格的性能及安全标准要求。这需要进行大量测试验证工作包括模拟仿真、封闭场地试验以及公共道路实验以确保系统能在各种实际场景中正常运行。“自动驾驶系列丛书-自动驾驶环境感知ppt”为学习和理解相关知识提供了重要资料,涵盖了基础原理到应用实践的全面内容。对于从事研究与开发工作的人员来说是一份宝贵的参考资料。
  • Udacity的
    优质
    Udacity的自动驾驶模拟器是一款专为自动驾驶技术开发的学习工具,它通过高度仿真的虚拟环境帮助用户深入理解并实践自动驾驶算法与系统。 Udacity自动驾驶模拟器可以直接运行exe文件。该模拟器支持模型训练和测试功能。在CarND-Behavioral-Cloning-P3-master目录下运行drive.py脚本,启动模拟器后选择AUTONOMOUS MODE即可查看效果。
  • 利用Simulink开发.pdf
    优质
    本PDF介绍如何运用Simulink工具在自动驾驶领域开展研发工作,涵盖模型设计、仿真测试及硬件实现等关键技术环节。 基于Simulink和Matlab对自动驾驶汽车进行功能性开发是初学者可以参考的一种方法。
  • 优质
    自动驾驶飞行系统是一种先进的航空技术,能够使飞机在无需人工干预的情况下自主完成起飞、巡航和降落等操作。该系统通过集成传感器、GPS和AI算法来确保飞行的安全性和效率。 ### 自动飞行控制系统知识点解析 #### 一、自动飞行控制系统的起源与发展 1. **早期探索**: - **设想的提出**:自动控制飞行的想法早在重于空气的飞行器出现之初就已经存在。1891年,海诺姆·马克西姆尝试在其设计的飞行器上安装了一个用于提升纵向稳定性的系统,该系统使用陀螺提供反馈信号,并通过伺服作动器调整升降舵的角度。尽管这一想法与现代自动飞行控制系统有着惊人的一致性,但最终未能实现。 - **发展的障碍**:早期自动控制飞行的发展受限于当时人们对空气动力学和飞行动力学的有限了解,以及自动控制理论尚未成熟。此外,当时的飞行器性能已经足以满足需求,因此自动控制系统的重要性并未被广泛认识到。 2. **发展驱动力**: - **复杂任务的需求**:随着飞行任务复杂度的增加和对飞机性能要求的提高,如需要飞机具有更远的航程、更高的飞行高度和更好的机动性等,自动飞行控制系统变得越来越重要。自动控制系统可以有效减轻飞行员在长途飞行中的负担,使其能够专注于更为关键的任务。 - **新技术的推动**:第二次世界大战后,导弹的出现进一步推动了自动控制技术的发展,使之成为不可或缺的一部分。 #### 二、自动飞行控制系统的组成与原理 1. **控制面**: - **定义与功能**:为了改变飞行器的姿态或空间位置,需要对其施加力和力矩。通常通过偏转控制面来实现这一点,控制面产生的空气动力和力矩直接影响飞行器的运动。 - **常见的控制面**:对于一般飞机而言,主要有三个控制面——升降舵、方向舵和副翼。升降舵主要用于控制飞机纵向平面的运动;方向舵和副翼则分别用于控制飞机侧向平面的运动。 - **控制过程**:通过控制飞机的升降舵来改变飞机的俯仰姿态角,进而改变飞机的升力和飞行高度。类似地,飞机的侧向控制也是通过这种方式实现的。 2. **自动飞行的基本原理**: - **反馈控制系统**:自动飞行控制系统采用的是典型的“反馈”系统结构,即闭环控制系统。当飞机因外部干扰而偏离预定状态时,系统中的敏感元件会检测到这一变化并发出相应的信号。信号经过放大和计算处理后,驱动执行机构使控制面进行适当的偏转,以恢复飞机至预定状态。 - **自动驾驶仪的作用**:自动驾驶仪作为飞机自动控制系统的核心组成部分,包含了敏感元件、放大计算装置和执行机构等关键部件。它能够模拟人类驾驶员的眼睛、大脑和肢体功能,自动完成飞行控制任务。 #### 三、自动飞行控制系统的高级应用 1. **随控布局飞行器(CCV)**: - **设计理念**:60年代初期,飞机设计领域出现了新的设计理念,即在设计阶段就考虑自动控制系统的作用。基于这种设计理念的飞机被称为随控布局飞行器(CCV),这类飞机通常配备更多的控制面,以便于实现更复杂的飞行任务和更高的飞行性能。 - **挑战与优势**:虽然增加控制面可以带来更好的性能,但同时也增加了自动飞行控制系统设计的复杂性。 2. **舵回路、稳定回路和控制回路**: - **基本概念**:自动飞行控制系统通常包含舵回路、稳定回路和控制回路等组成部分。舵回路负责执行具体的操作指令;稳定回路确保飞机在受到扰动时能够迅速恢复到稳定状态;而控制回路则根据飞行任务的要求调整飞机的姿态和轨迹。 - **工作原理**:这些回路共同协作,确保自动飞行控制系统能够有效地实现预定的飞行任务。 通过以上分析可以看出,自动飞行控制系统是现代航空领域不可或缺的关键技术之一。其发展不仅依赖于技术创新,还需要深入理解飞行器的动力学特性以及自动控制理论的基础知识。随着技术的进步,未来的自动飞行控制系统将会更加智能化和高效,为航空安全和效率带来更大的提升。
  • 优质
    自动驾驶飞行系统是一种利用先进导航技术、人工智能和传感器技术实现飞机自主起飞、巡航与着陆的智能航空控制系统。 本书介绍了典型的自动飞行控制系统以及控制律设计分析方法。
  • 连续版-v2(LunarLanderContinuous-v2)
    优质
    《月球着陆器连续版-v2》是一款高级模拟游戏环境,专为强化学习设计。玩家需操控航天器精准降落在月面指定区域,挑战不断变化的重力和地形条件,考验操作技巧与策略思维。 LunarLanderContinuous-v2 是月球着陆器连续版的第二版本。